Vol. 91
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-03-12
A Fast Approach for Simulating Long-Time Response of High-Speed Dispersive and Lossy Interconnects Terminated with Nonlinear Loads
By
Progress In Electromagnetics Research, Vol. 91, 153-171, 2009
Abstract
This paper presents an efficient approach for analyzing the longtime response of high-speed dispersive and lossy interconnects terminated with nonlinear loads. In this approach, a fast real-time convolution algorithm with computational cost st O(N log2N) is suggested to tackle the long-time analysis of the high-speed dispersive and lossy interconnects, which are modeled by S-parameters. In addition, the acquirement of the S-parameters is recommended to adopt wideband closed-form formulas. The time response of a microstrip line with a nonlinear load is shown as a practical example. The dominant parameters affecting the response of this microstrip line is observed and discussed in detail. The approach demonstrates its efficiency and accuracy in the analysis.
Citation
Cheng-Nan Chiu, and I-Ting Chiang, "A Fast Approach for Simulating Long-Time Response of High-Speed Dispersive and Lossy Interconnects Terminated with Nonlinear Loads," Progress In Electromagnetics Research, Vol. 91, 153-171, 2009.
doi:10.2528/PIER09021502
References

1. Hall, S. H., G. W. Hall, and J. A. McCall, High-speed Digital System Design — A Handbook of Interconnect Theory and Design Practices, Wiley, New York, 2000.

2. Young, B., Digital Signal Integrity — Modeling and Simulation with Interconnects and Packages, Prentice Hall, London, 2001.

3. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equation in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 5, 302-307, 1966.

4. Kunz, K. S. and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC Press, Boca Raton, FL, 1993.

5. Mardare, D. and J. LoVetri, "The finite-difference time-domain solution of lossy MTL networks with nonlinear junctions," IEEE Trans. Electromagn. Compat., Vol. 37, No. 5, 252-259, 1995.
doi:10.1109/15.385890

6. Taflove, A., Computational Electrodynamics: The Finite Difference Time Domain Method, Artech House, Norwood, MA, 1995.

7. Orlandi, A. and C. R. Paul, "FDTD analysis of lossy, multiconductor transmission lines terminated in arbitrary loads," IEEE Trans. Electromagn. Compat., Vol. 38, No. 3, 388-399, 1996.
doi:10.1109/15.536069

8. Djordjevic, A. R., T. K. Sarkar, and R. F. Harrington, "Analysis of lossy transmission lines with arbitrary nonlinear terminal networks," IEEE Trans. Microwave Theory Tech., Vol. 34, No. 6, 660-666, 1986.
doi:10.1109/TMTT.1986.1133414

9. Schutt-Aine, J. E. and R. Mittra, "Scattering parameter transient analysis of transmission lines loaded with nonlinear terminations," IEEE Trans. Microwave Theory Tech., Vol. 36, No. 3, 529-539, 1988.
doi:10.1109/22.3545

10. Winklestein, D., M. B. Steer, and R. Pomerieau, "Simulation of arbitrary transmission line networks with nonlinear terminations," IEEE Trans. Circuit Syst., Vol. 38, No. 4, 418-422, 1991.
doi:10.1109/31.75398

11. Komuro, T., "Time-domain analysis of lossy transmission lines with arbitrary terminal networks," IEEE Trans. Circuit Syst., Vol. 38, No. 10, 1160-1164, 1991.
doi:10.1109/31.97535

12. Chang, F. Y., "Waveform relaxation analysis of nonuniform lossy transmission lines characterized with frequency-dependent parameters," IEEE Trans. Circuit Syst., Vol. 38, No. 10, 1484-1500, 1991.
doi:10.1109/31.108502

13. Gu, Q., D. M. Sheen, and S. M. Ali, "Analysis of transients in frequency-dependent interconnections and planar circuits with nonlinear loads," IEEE Proc.-H, Vol. 139, No. 2, 38-44, 1992.

14. Mao, J. F. and Z. F. Li, "Analysis of the time response of nonuniform multiconductor transmission lines with a method of equivalent cascaded network chain ," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 5, 948-954, 1992.
doi:10.1109/22.137402

15. Maio, I., S. Pignari, and F. Canavero, "Influence of the line characterization on transient analysis of nonlinearly loaded lossy transmission lines," IEEE Trans. Circuit Syst. I, Vol. 41, No. 3, 197-209, 1994.
doi:10.1109/81.273919

16. Huang, C. C., "Analysis of multiconductor transmission lines with nonlinear terminations in frequency domain," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 8, 1069-1083, 2005.
doi:10.1163/156939305775526142

17. Antonini, G., "A dyadic Green's function based method for the transient analysis of lossy and dispersive multiconductor transmission lines ," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 4, 880-895, 2008.
doi:10.1109/TMTT.2008.919651

18. Chiang, I. T. and W. C. Chew, "Fast real-time convolution algorithm for microwave multiport networks with nonlinear terminations ," IEEE Trans. Circuit Syst. II, Vol. 52, No. 7, 370-375, 2005.
doi:10.1109/TCSII.2005.850410

19. Chiang, I. T. and W. C. Chew, "Fast real-time convolution algorithm for transients of nonlinearly-terminated microwave multiport circuits," Microwave Opt. Tech. Lett., Vol. 39, No. 4, 280-282, 2003.
doi:10.1002/mop.11190

20. Hairer, E., C. Lubich, and M. Schliche, "Fast numerical solution of nonlinear Volterra convolution equations," SIAM J. Sci. Stat. Comput., Vol. 6, 532-541, 1985.

21. Edwards, T. C. and M. B. Steer, Foundations of Interconnect and Microstrip Design, Wiley, New York, 2000.

22. Kobayashi, M., "A dispersion formula satisfying recent requirements in microstrip CAD," IEEE Trans. Microwave Theory Tech., Vol. 36, No. 8, 1246-1250, 1988.
doi:10.1109/22.3665

23. York, R. A. and R. C. Compton, "Experimental evaluation of existing CAD models for microstrip dispersion," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 3, 327-328, 1990.
doi:10.1109/22.45354

24. Hammerstad, E. and O. Jensen, "Accurate models for microstrip computer-aided design," IEEE MTT-S Int. Microwave Symp. Dig., 407-409, 1980.

25. Bahl, I. J. and R. Garg, "Simple and accurate formulas for a microstrip with finite strip thickness," Proc. IEEE, Vol. 65, No. 11, 1611-1612, 1977.
doi:10.1109/PROC.1977.10783

26. Collin, R. E., Foundations for Microwave Engineering, 2nd Ed., McGraw-Hill, New York, 1992.

27. Denlinger, E. J., "Losses of microstrip lines," IEEE Trans. Microwave Theory Tech., Vol. 28, No. 6, 513-522, 1980.
doi:10.1109/TMTT.1980.1130112