Vol. 91
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-04-08
On the Application of Microwave Calibration-Independent Measurements for Noninvasive Thickness Evaluation of Medium- OR Low-Loss Solid Materials
By
Progress In Electromagnetics Research, Vol. 91, 377-392, 2009
Abstract
Microwave methods require some sort of calibration before physical (thickness, flaw, etc.) and electrical (permittivity, permeability, etc.) measurements of materials. It is always attractive to devise a method which not only eliminates this necessity but also saves time before measurements. Microwave calibration-independent measurements can be utilized for this goal. However, in the literature, these measurements are only applied for electrical measurements of materials. In this research paper, we investigate the performance of microwave calibration-independent measurements for thickness evaluation of dielectric materials to increase the potential of available microwave techniques for thickness evaluation of dielectric materials. We derive an explicit expression for thickness estimation of dielectric materials from calibration-independent measurements for the adopted calibration-independent technique. We also propose a criterion for increasing the performance of measurements. We conducted thickness measurements of six dielectric specimens with different lengths to validate the derived expressions and the proposed criterion for thickness measurements.
Citation
Ugur Cem Hasar, and O. Simsek, "On the Application of Microwave Calibration-Independent Measurements for Noninvasive Thickness Evaluation of Medium- OR Low-Loss Solid Materials," Progress In Electromagnetics Research, Vol. 91, 377-392, 2009.
doi:10.2528/PIER09020801
References

1. Zoughi, R., Microwave Non-destructive Testing and Evaluation, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.

2. Blitz, J., Electrical and Magnetic Methods of Non-destructive Testing, Chapman & Hall, London, UK, 1997.

3. Carriveau, G. W. and R. Zoughi, "Nondestructive evaluation and characterization of complex composite structures," Proc. 11th Int. Sym. on Nondestructive Characterization of Materials, 273-280, Berlin, Germany, 2002.

4. Zoughi, R. and M. Lujan, "Nondestructive microwave thickness measurement of dielectric slabs," Mater. Eval., Vol. 48, 1100-1105, 1990.

5. Bakhtiari, S., S. I. Ganchev, and R. Zoughi, "Open-ended rectangular waveguide for nondestructive thickness measurement and variation detection of lossy dielectric slabs backed by a conducting plate," IEEE Trans. Instrum. Meas., Vol. 42, No. 1, 19-24, 1993.
doi:10.1109/19.206673

6. Zoughi, R. and S. Bakhtiari, "Microwave nondestructive detection and evaluation of disbonding and elamination in layered dielectric slabs," IEEE Trans. Instrum. Meas., Vol. 39, No. 6, 1059-1063, 1990.
doi:10.1109/19.65826

7. Ganchev, S. I., N. Qaddoumi, E. Ranu, and R. Zoughi, "Microwave detection optimization of disbond in layered dielectrics with varying thickness," IEEE Trans. Instrum. Meas., Vol. 44, No. 2, 326-328, 1995.
doi:10.1109/19.377843

8. Lavelle, T. M., "Microwaves in nondestructive testing," Mater. Eval., Vol. 25, 254-258, 1967.

9. Botsco, R. J., "Nondestructive testing of plastics with microwaves," Mater. Eval., Vol. 27, 25A-32A, 1969.

10. Mondal, J. P. and T. H. Chen, "Propagation constant determination in microwave fixture de-embedding procedure," IEEE Trans. Microw. Theo. Tech., Vol. 36, No. 4, 706-713, 1988.
doi:10.1109/22.3575

11. Baek, K. H., H. Y. Sung, and W. S. Park, "A 3-position transmission/reflection method for measuring the permittivity of low loss materials ," IEEE Microw. Guided Wave Lett., Vol. 5, No. 1, 3-5, 1995.
doi:10.1109/75.382378

12. Lee, M. Q. and S. Nam, "An accurate broadband measurement of substrate dielectric constant," IEEE Microw. Guided Wave Lett., Vol. 6, No. 4, 168-170, 1996.
doi:10.1109/75.481077

13. Janezic, M. D. and J. A. Jargon, "Complex permittivity determination from propagation constant measurements," IEEE Microw. Guided Wave Lett., Vol. 9, No. 2, 76-78, 1999.
doi:10.1109/75.755052

14. Huygen, I., C. Steukers, and F. Duhamel, "A wideband line-line dielectrometric method for liquids, soils, and planar substrates," IEEE Trans. Instrum. Meas., Vol. 50, No. 5, 1343-1348, 2001.
doi:10.1109/19.963208

15. Wan, C., B. Nauwelaers, W. De Raedt, and M. Van Rossum, "Two new measurement methods for explicit determination of complex permittivity," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 11, 1614-1619, 1998.
doi:10.1109/22.734537

16. Reynoso-Hernandez, J. A., C. F. Estrada-Maldonado, T. Parra, K. Grenier, and J. Graffeuil, "An improved method for estimation of the wave propagation constant γ in broadband uniform millimeter wave transmission line," Microwave Opt. Technol. Lett., Vol. 22, No. 4, 268-271, 1999.
doi:10.1002/(SICI)1098-2760(19990820)22:4<268::AID-MOP16>3.0.CO;2-6

17. Hasar, U. C., "A new calibration-independent method for complex permittivity extraction of solid dielectric materials," IEEE Microw. Wireless Compon. Lett., Vol. 44, No. 9, 585-587, 2008.

18. Hasar, U. C., "A new calibration-independent method for complex permittivity extraction of solid dielectric materials," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 12, 788-790, 2008.
doi:10.1109/LMWC.2008.2007699

19. Hasar, U. C., "A calibration-independent method for broadband and accurate complex permittivity determination of liquid materials," Rev. Sci. Instrum., Vol. 79, No. 9, 086114-1-086114-3, 2008.

20. Wu, Y., Z. Tang, Y. Yu, and X. He, "A new method to avoid acrowding phenomenon in extracting the permittivity of ferroelectric thin films," Progress In Electromagnetics Research Letters, Vol. 4, 159-166, 2008.
doi:10.2528/PIERL08091402

21. He, X., Z. Tang, B. Zhang, and Y. Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
doi:10.2528/PIERL08011501

22. Kurokawa, K., "Power waves and the scattering matrix," IEEE Trans. Microw. Theory Tech., Vol. 13, 194-202, 1965.
doi:10.1109/TMTT.1965.1125964

23. Hasar, U. C. and O. Simsek, "A calibration-independent method for position-insensitive and nonsingular dielectric measurements of solid materials," J. Phys. D: Applied Phys., Vol. 42, 075403-075412, 2009.
doi:10.1088/0022-3727/42/7/075403

24. Engen, G. F. and C. A. Hoer, "'Thru-reflect-line': An improved technique for calibrating the dual six-port automatic network analyzer," IEEE Trans. Microwave Theory Tech., Vol. 27, No. 12, 987-993, 1979.
doi:10.1109/TMTT.1979.1129778

25. Hoer, C. A. and G. F. Engen, "Calibrating a dual six-port of fourport for measuring two-ports with any connectors," IEEE MTT-S Int. Microwave Symp. Dig., 665-668, Baltimore, MD, 1986.

26. Hasar, U. C., "Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials," Meas. Sci. Techol., Vol. 19, No. 5, 055706-055715, 2008.
doi:10.1088/0957-0233/19/5/055706

27. Baker-Jarvis, J., "Transmission/reflection and short-circuit line permittivity measurements," Natl. Inst. Stand. Technol., Boulder, CO, Tech. Note 1341, 1990.

28. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, and R. G. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability," Natl. Inst. Stand. Technol., Boulder, CO, Tech. Note 1355, 1992.

29. Von Hippel, A. R., Dielectric Materials and Applications, John Wiley & Sons, New York, NY, 1954.

30. Hasar, U. C., "A self-checking technique for materials characterization using calibration-independent measurements of reflecting lines," Microw. Opt. Technol. Lett., Vol. 51, No. 1, 129-132, 2009.
doi:10.1002/mop.23978

31. Buyukozturk, O., T. Y. Yu, and J. A. Ortega, "A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements," Cem. Concr. Compos., Vol. 28, No. 4, 349-359, 2006.
doi:10.1016/j.cemconcomp.2006.02.004

32. Hasar, U. C., "Free-space nondestructive characterization of young mortar samples," J. Mater. Civ. Eng., Vol. 19, No. 8, 674-682, 2007.
doi:10.1061/(ASCE)0899-1561(2007)19:8(674)

33. Challa, R. K., D. Kajfez, J. R. Gladden, and A. Z. Elsherbeni, "Permittivity measurement with as non-standard waveguide by using TRL calibration and fractional linear data fitting," Progress In Electromagnetics Research B, Vol. 2, 1-13, 2008.
doi:10.2528/PIERB07102001

34. Khalaj-Amirhosseini, K., "Closed form solutions for nonuniform transmission lines," Progress In Electromagnetics Research B, Vol. 2, 243-258, 2008.
doi:10.2528/PIERB07111502