Vol. 86
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-10-23
Fast Calculation of the Shielding Effectiveness for a Rectangular Enclosure of Finite Wall Thickness and with Numerous Small Apertures
By
Progress In Electromagnetics Research, Vol. 86, 341-355, 2008
Abstract
In this paper, an extremely fast technique is introduced to evaluate the shielding effectiveness of a rectangular enclosure of finite wall thickness and numerous square or circular small apertures subject to a normally incident plane wave. The technique is based on the traditional waveguide circuit model where the enclosure is replaced with an equivalent shorted transmission line. In the proposed circuit model, the perforated thick wall is represented by an equivalent impedance which is derived from the reflection coefficient. The computation results are in very good agreement with measurements. Additionally, further results are compared to a generalized modal MoM technique which are in excellent agreement as the number of apertures increase. Besides accuracy, the method is extremely efficient and easy to implement compared to the numerical techniques.
Citation
Parisa Dehkhoda, Ahad Tavakoli, and Rouzbeh Moini, "Fast Calculation of the Shielding Effectiveness for a Rectangular Enclosure of Finite Wall Thickness and with Numerous Small Apertures," Progress In Electromagnetics Research, Vol. 86, 341-355, 2008.
doi:10.2528/PIER08100803
References

1. Robinson, M. P., T. M. Benson, C. Christopoulos, J. F. Dawson, M. D. Ganley, A. C. Marvin, S. J. Porter, and D. W. P. Thomas, "Analytical formulation for the shielding effectiveness of enenclosures with apertures," IEEE Trans. Electromagn. Compat., Vol. 40, No. 3, 240-248, Aug. 1998.
doi:10.1109/15.709422

2. Dehkhoda, P., A. Tavakoli, and R. Moini, "An efficient and reliable shielding effectiveness evaluation of a rectangular enclosure with numerous apertures," IEEE Trans. Electromag. Compat., Vol. 50, No. 1, 208-212, Feb. 2008.
doi:10.1109/TEMC.2007.911922

3. Bahadorzadeh, M. and M. N. Moghaddasi, "Improving the shielding effectiveness of a rectangular metallic enclosure with aperture by using extra shielding wall," Progress In Electromagnetics Research Letters, Vol. 1, 45-50, 2008.
doi:10.2528/PIERL07110706

4. Yla-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.
doi:10.2528/PIER04071301

5. Matsushima, A., Y. Nakamura, and S. Tomino, "Application of integral equation method to metal-plate lens structures," Progress In Electromagnetics Research, Vol. 54, 245-262, 2005.
doi:10.2528/PIER05011401

6. Nie, X. C. and N. Yuan, "Accurate modeling of monopole antennas in shielded enclosures with apertures," Progress In Electromagnetics Research, Vol. 79, 251-262, 2008.
doi:10.2528/PIER07100403

7. Wei, X. C., E. P. Li, and C. H. Liang, "Fast solution for large scale electromagnetic scattering problems using wavelet transform and its precondition," Progress In Electromagnetics Research, Vol. 38, 253-267, 2002.
doi:10.2528/PIER02042602

8. Edrisi, M. and A. Khodabakhshian, "Simple methodology for electric and magnetic shielding effectiveness computation of enclosures for electromagnetic compatibility use," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1051-1060, 2006.
doi:10.1163/156939306776930312

9. Ojeda, X. and L. Pichon, "Combining the finite element method and Pade approximation for scattering analysis application to radiated electromagnetic compatibility problems," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 10, 1375-1390, 2005.
doi:10.1163/156939305775525918

10. Lei, J. Z., C. H. Liang, and Y. Zhang, "Study on shielding effectiveness of metallic cavities with apertures by combining parallel FDTD method with windowing technique," Progress In Electromagnetics Research, Vol. 74, 82-112, 2007.

11. Barkeshli, K. and J. L. Volakis, "Scattering from narrow grooves and slits," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 1–4, 459-474, 1992.

12. Robertson, J., E. A. Parker, B. Sanz-Izquierdo, and J. C. Batchelor, "Electromagnetic coupling through arbitrary apertures in parallel conducting planes," Progress In Electromagnetics Research B, Vol. 8, 29-42, 2008.

13. Jiao, C., X. Cui, L. Li, and H. Li, "Subcell FDTD analysis of shielding effectiveness of a thin-walled enclosure with an aperture," IEEE Trans. Magnetics, Vol. 42, No. 4, 1075-1078, Apr. 2006.
doi:10.1109/TMAG.2006.871638

14. Edelvik, F. and T. Weiland, "Stable modeling of arbitrarily oriented thin slots in the FDTD method," IEEE Trans. Electromag. Compat., Vol. 47, No. 3, 440-446, Aug. 2005.
doi:10.1109/TEMC.2005.853160

15. Wang, J. and W. J. Koh, "Electromagnetic coupling analysis of transient signal through slots or apertures perforated in a shielding metallic enclosure using FDTD methodology," Progress In Electromagnetics Research, Vol. 36, 247-264, 2002.
doi:10.2528/PIER02021701

16. Paul, J., V. Podlozny, and C. Christopoulos, "The use of digital filtering techniques for the simulation of fine features in EMC problems solved in the time domain," IEEE Trans. Electromag. Compat., Vol. 45, No. 2, 238-244, May 2003.
doi:10.1109/TEMC.2003.810810

17. Podlozny, V., C. Christopoulos, and J. Paul, "Efficient description of fine features using digital filters in time-domain computational electromagnetics," IEE Proceedings — Science, Measurement and Technology, Vol. 149, No. 5, 254-257, Sept. 2002.
doi:10.1049/ip-smt:20020541

18. Park, H. H. and H. J. Eom, "Electromagnetic penetration into a rectangular cavity with multiple rectangular apertures in a conducting plane," IEEE Trans. Electromag. Compat., Vol. 42, No. 3, 303-307, Aug. 2000.
doi:10.1109/15.865338

19. Chen, C. C., "Transmission of microwave through perforated flat plates of finite thickness," IEEE Trans. Microwave. Theory Tech., Vol. 21, No. 1, 1-6, Jan. 1973.
doi:10.1109/TMTT.1973.1127906

20. Belokour, I., J. LoVetri, and S. Kashyap, "A higher-order mode transmission line model of the shielding effectiveness of enclosures with apertures," IEEE Int. Symp. Electromag. Compat., 702-707, Aug. 13–17, 2001.

21. Shim, J. J., D. G. Kam, J. H. Kwon, H. D. Choi, and J. Kim, "Circuital approach to evaluate shielding effectiveness of rectangular enclosures with apertures on multiple sides," EMC Europe 2004, Int. Symp. Electromag. Compat., Eindhoven, The Netherlands, Sept. 6–10, 2004.

22. Dan, S., S. Yuanmao, and Y. Gao, "3 high-order mode transmission line model of enclosure with off-center aperture," IEEE Int. Symp. Electromag. Compat., 361-364, 2007.

23. http://techreports.larc.nasa.gov/ltrs/PDF/2000/cr/NASA-2000-cr210 297.pdf, July 2006.

24. Dehkhoda, P., A. Tavakoli, and R. Moini, "Shielding effectiveness of a rectangular enclosure with finite wall thickness and rectangular apertures by the generalized modal MoM," IET Science, Measurement and Technology.