Vol. 84
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-09-13
Dielectric Study of Bound Water in Grain at Radio and Microwave Frequencies
By
Progress In Electromagnetics Research, Vol. 84, 379-406, 2008
Abstract
A phenomenological theoretical model of grain dielectric properties is presented for radio and microwave frequencies. On the bases of this model, an inverse problem is solved to determine the dielectric permittivity of bound water inside kernels of winter wheat using results of complex permittivity measurements for bulk grain carried out by other authors. The character of the water complex permittivity dependence on frequency and kernel moisture content is studied. For this, the permittivity was considered as a sum of five different functions, depending on moisture content explicitly, and with coefficients being subject to determination. The frequency dependence of these coefficients was analyzed, and the regions typical for the ionic conductivity and for the dipole-orientational polarization mechanism were detected. For this polarization mechanism, the relaxation frequencies are differ from those of free water. It was concluded that water microparticles inside kernels are formed not by pure water, but by aqueous solution of four different substances coming from the kernel solid phase. It is shown that bound water, for the most part, is in a state that is intermediate between that of free water and that of molecules in the monomolecular water layer on the solid phase boundary.
Citation
Vladimir Serdyuk, "Dielectric Study of Bound Water in Grain at Radio and Microwave Frequencies," Progress In Electromagnetics Research, Vol. 84, 379-406, 2008.
doi:10.2528/PIER08081103
References

1. Kupfer, K., "Methods of density-independent moisture measurement," Electromagnetic Aquametry: Electromagnetic Wave Interaction with Water and Moist Substances, 135-168, 2005.

2. Lonappan, A., V. Thomas, G. Bindu, C. Rajasekaran, and K. T. Mathew, "Nondestructive measurement of human blood at microwave frequencies," J. ofEle ctromagn. Waves and Appl., Vol. 21, No. 8, 1131-1139, 2007.

3. Trabelsi, S., A. W. Kraszewski, and S. O. Nelson, "Universal calibration method for microwave moisture sensing in granular materials," Trans. Amer. Soc. Agric. Eng., Vol. 44, No. 3, 731-736, 2001.

4. Nelson, S. O. and S. Trabelsi, "Permittivity measurements and agricultural applications," Electromagnetic Aquametry: Electromagnetic Wave Interaction with Water and Moist Substances, 419-442, 2005.

5. Pissis, P., "Water in polymers and biopolymers studied by dielectric techniques," Electromagnetic Aquametry: Electromagnetic Wave Interaction with Water and Moist Substances, 39-70, 2005.

6. Vandermeulen, D. and N. Ressler, "A near-infrared analysis of water-macromolecule interactions. Hydration and the spectra of aqueous solutions of intact proteins," Arch. Biochem. and Biophys, Vol. 199, No. 1, 197-205, 1980.
doi:10.1016/0003-9861(80)90273-8

7. Huhnerfuss, H. and W. Alpers, "Molecular aspects of the system water/monomolecular surface film and the occurrence of a new anomalous dispersion regime at 1.43 GHz," J. Phys. Chem., Vol. 83, No. 25, 5251-5258, 1983.
doi:10.1021/j150643a039

8. Mashimo, S., S. Kuwabara, S. Yagihara, and K. Higasi, "Dielectric relaxation time and structure of bound water in biological materials," J. Phys. Chem., Vol. 91, No. 25, 6337-6338, 1987.
doi:10.1021/j100309a005

9. Tao, N. J., S. M. Lindsay, and A. Rupprecht, "Structure of DNA hydration shells studied by Raman spectroscopy," Biopolymers, Vol. 28, No. 5, 1019-1030, 1989.
doi:10.1002/bip.360280509

10. Brandelik, A. and G. Krafft, "Measurement of bound and free water in mixtures," Microwave Aquametry, 101-109, 1996.

11. Yagihara, S., M. Oyama, A. Inoue, M. Asano, S. Sudo, and N. Shinyashiki, "Dielectric relaxation measurement and analysis of restricted water structure in rice kernels," Measur. Sci. Technol., Vol. 18, No. 4, 983-990, 2007.
doi:10.1088/0957-0233/18/4/004

12. Jones, S. B. and D. Or, "Thermal and geometrical effects on bulkp ermittivity of porous mixtures containing bound water," Electromagnetic Aquametry: Electromagnetic Wave Interaction with Water and Moist Substances, 71-92, 2005.

13. Stacheder, M., C. Huebner, S. Schlaeger, and A. Brandelik, "Combined TDR and low-frequency permittivity measurements for continuous snow wetness and snow density determination," Electromagnetic Aquametry: Electromagnetic Wave Interaction with Water and Moist Substances, 367-382, 2005.

14. Ulaby, F. T., R. K. Moore, and A. K. Fung, "Microwave dielectric properties of natural earth materials," Microwave Remote Sensing, Vol. III, 2017-2027, 1986.

15. Nelson, S. O. and L. Stetson, "Frequency and moisture dependence of the dielectric properties of hard red winter wheat," J. Agric. Eng. Res., Vol. 21, 181-192, 1976.
doi:10.1016/0021-8634(76)90073-1

16. Koledintseva, M. Y., S. K. R. Chandra, R. E. DuBroff, and R. W. Schwartz, "Modeling of dielectric mixtures containing conducting inclusions with statistically distributed aspect ratio," Progress In Electromagnetics Research, Vol. 66, 213-228, 2006.
doi:10.2528/PIER06110903

17. Koledintseva, M. Y., R. E. DuBroff, R. W. Schwartz, and J. L. Drewniak, "Double statistical distribution of conductivity and aspect ratio of inclusions in dielectric mixtures at microwave frequencies," Progress In Electromagnetics Research, Vol. 77, 193-214, 2007.
doi:10.2528/PIER07073103

18. Yang, D. K., X. Y. Hu, S. Y. Zhang, and M. Dai, "Numerical high frequency," PIERS Online, Vol. 3, No. 4, 457-461, 2007.
doi:10.2529/PIERS061005091713

19. Wang, H. G., C. H. Chan, L. Tsang, and K. F. Chan, "Mixture effective permittivity simulation using IMLMQRF method of preconditioned EFIE," Progress In Electromagnetics Research, Vol. 57, 285-310, 2006.
doi:10.2528/PIER05072603

20. Sun, X. M., Y. P. Han, and H. H. Wang, "Near-infrared light scattering by ice-water mixed clouds," Progress In Electromagnetics Research, Vol. 61, 133-142, 2006.
doi:10.2528/PIER06011401

21. Li, Y. and P. Yang, "The permittivity based on electromagnetic wave attenuation for rain medium and its applications," J. of Electromagn. Waves and Appl., Vol. 20, No. 15, 2231-2238, 2006.
doi:10.1163/156939306779322512

22. Gong, S. H. and J. Y. Huang, "Accurate analytical model of equvalent dielectric constant for rain medium," J. ofEle ctromagn. Waves and Appl., Vol. 20, No. 13, 1775-1783, 2006.
doi:10.1163/156939306779292228

23. Bahrami, M., J. Rashed-Mohassel, and M. Mohammad-Taheri, "An exact solution of coherent wave propagation in rain medium with realistic raindrop shapes," Progress In Electromagnetics Research, Vol. 79, 107-118, 2008.
doi:10.2528/PIER07100602

24. Van Beek, L. K. H., "Dielectric behavior of heterogeneous systems," Progress in Dielectrics, Vol. 17, 69-114, 1967.

25. Sazhin, B. I. (ed), Electrical Properties of Polymers, Chemistry Publ., 1977.

26. Sihvola, A., Electromagnetic Mixing Formulas and Applications, IEE, London, 1999.

27. Tinga, W. R., "Mixture laws and microwave-material interactions," Dielectric Properties ofHeter ogeneous Materials, 69-114, 1992.

28. Jylhä, L. and A. Sihvola, "Equation for the effective permittivity of particle-filled composites for material design applications," J. Phys. D: Appl. Phys., Vol. 40, No. 16, 4966-4973, 2007.
doi:10.1088/0022-3727/40/16/032

29. Kukharchik, P. D., V. M. Serdyuk, J. A. Titovitsky, and M. O. Purovsky, "Effect of continuous modification of dielectric order in grain," J. Phys. D: Appl. Phys., Vol. 39, No. 13, 2832-2838, 2006.
doi:10.1088/0022-3727/39/13/030

30. Kaatze, U., "Microwave dielectric properties of water," Microwave Aquametry, 37-53, 1996.

31. Kaatze, U., "Electromagnetic wave interaction with water and aqueous solutions," Electromagnetic Aquametry: Electromagnetic Wave Interaction with Water and Moist Substances, 15-37, 2005.

32. Egorov, G., "Thermodynamic interaction between grain and water," Khleboproducty, No. 2, 22-23, 2004.

33. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon, New York, 1960.

34. Wert, C. and R. M. Thomson, Physics of Solids, McGraw-Hill, New York, London, 1964.

35. Belyaev, B. A., N. A. Drokin, V. F. Shabanov, and V. N. Shepov, "High-frequency dielectric spectra from liquid crystals of series nCB and nOCB," Technical Physics, Vol. 47, No. 4, 470-473, 2002.
doi:10.1134/1.1470597