Vol. 83
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-08-05
Compact and Wideband 1-d Mushroom-Like EBG Filters
By
Progress In Electromagnetics Research, Vol. 83, 323-333, 2008
Abstract
Anew wideband and compact bandstop filter using one dimensional (1-D) mushroom-like electromagnetic bandgap (EBG) structures is proposed in this paper. Although the proposed structure can not be fabricated as easy as defected ground structure (DGS) filters, it has several winning features such as more compactness, better characteristics and no backward radiation. A5-cell 1-D mushroomlike EBG filter is compared with 5-cell and 9-cell circular DGS filters. The 1-D mushroom-like EBG filter is found to be more compact as it requires fewer cells for the same characteristics and also as it has 0.44 times shorter cell length. The proposed EBG filter has a 10-dB bandwidth of 39% while the 5-cell and 9-cell DGS filters have 10-dB bandwidth of 20% and 27%, respectively. Also, the 1-D mushroom-like EBG filter is studied for various number of cells and compared with a two dimensional (2-D) structure. The simulated and measured results are found to be in good agreement.
Citation
S. Moghadasi, Amir Attari, and Mir Mirsalehi, "Compact and Wideband 1-d Mushroom-Like EBG Filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
doi:10.2528/PIER08050101
References

1. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, 2059-2074, 1999.
doi:10.1109/22.798001

2. Engheta, N. and R. W. Ziolkowski, Metamaterials Physics and Engineering Explorations, Wiley, New York, 2006.

3. Chang, C. C., Y. Qian, and T. Itoh, "Analysis and applications of uniplanar compact photonic bandgap structures," Progress In Electromagnetic Research, Vol. 41, 211-235, 2003.

4. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directivity EBG resonator antenna using square loop FSS as superstate layer," Progress In Electromagnetic Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201

5. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-fed microstrip antenna," Progress In Electromagnetic Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801

6. Yang, F., V. Demir, D. A. Elsherbeni, A. Z. Elsherbeni, and A. A. Eldek, "Enhancement of printed dipole antennas characteristics using semi-EBG ground plane," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 993-1006, 2006.
doi:10.1163/156939306776930330

7. Li, L., C.-H. Liang, and C.-H. Chan, "Waveguide end-slot phased array antenna integrated with electromagnetic bandgap structures," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 161-174, 2007.
doi:10.1163/156939307779378826

8. Gu, Y. Y., W. X. Zhang, and Z. C. Ge, "Two improved Fabry-Perot resonator printed antennas using EBG superstrate and AMC substrate," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 719-728, 2007.
doi:10.1163/156939307780749147

9. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: Alo w mutual coupling design for array applications," IEEE Trans. Ant. Prop., Vol. 51, 2939-2949, 2003.

10. Fu, Y. Q., Q. R. Zheng, Q. Gao, and G. H. Zhang, "Mutual coupling reduction between large antenna arrays using electromagnetic bandgap (EBG) structures," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 819-825, 2006.
doi:10.1163/156939306776143415

11. Yang, L., M. Fan, and Z. Feng, "Aspiral electromagnetic bandgap (EBG) structure and its application in microstrip antenna arrays," Proc. APMC, Vol. 5, 418-422, China, 2005.

12. Zheng, Q.-R., B.-Q. Lin, Y.-Q. Fu, and N.-C. Yuan, "Characteristics and applications of a novel compact spiral electromagnetic band-gap (EBG) structure," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 199-213, 2007.
doi:10.1163/156939307779378844

13. Moghadasi, M. S., A. R. Attari, and M. M. Mirsalehi, "Comparison between various compact Electromagnetic Band-gap (EBG) structures for coupling reduction in antenna arrays," Proc. IWAT, 175-178, Japan, March 2008.

14. Wu, B., B. Li, T. Su, and C.-H. Liang, "Equivalent-circuit analysis and lowpass filter design of split-ring resonator DGS," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 1943-1953, 2006.
doi:10.1163/156939306779322765

15. Chen, J., Z.-B.Weng, Y.-C. Jiao, and F.-S. Zhang, "Lowpass filter design of Hilbert curve ring defected ground structure," Progress In Electromagnetic Research, Vol. 70, 269-280, 2007.
doi:10.2528/PIER07012603

16. Radisic, V., Y. Qian, R. Coccioli, and T. Itoh, "Novel 2-D photonic bandgap structure for microstrip lines," IEEE Microw. Guided Wave Lett., Vol. 8, No. 2, 69-71, February 1998.
doi:10.1109/75.658644

17. Falcone, F., T. Lopetegi, and M. Sorolla, "1-D and 2-D photonic bandgap microstrip structures," Microw. Opt. Technol. Lett., Vol. 22, No. 6, 411-412, September 1999.
doi:10.1002/(SICI)1098-2760(19990920)22:6<411::AID-MOP13>3.0.CO;2-U

18. Huang, S. Y. and Y. H. Lee, "Tapered dual-plane compact electromagnetic bandgap microstrip filter structures," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 9, 2656-2664, 2005.
doi:10.1109/TMTT.2005.854212

19. Sharma, R., T. Chakravarty, and S. Bhooshan, "Design of a novel 3 dB Microstrip backward wave coupler using defected ground structure," Progress In Electromagnetic Research, Vol. 65, 261-273, 2006.
doi:10.2528/PIER06100502