Vol. 78

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2007-09-29

Pulse Preserving Capabilities of Printed Circular Disk Monopole Antennas with Different Substrates

By Qi Wu, Rong-Hong Jin, and Jun-Ping Geng
Progress In Electromagnetics Research, Vol. 78, 349-360, 2008
doi:10.2528/PIER07092004

Abstract

This paper presents a theoretical investigation on the pulse preserving capabilities of the CPW-fed circular disk monopole antennas at the assistance of correlation factors. The distortions of the radiated signals, which are mainly caused by the bandwidth mismatch between the antennas and the source pulse, are alleviated by using suitable source pulse. The ringing and pulse-width spreading of the radiated signals caused by the energy-storage effects of the dielectric substrate are discussed in detail. Possible improvement solutions and an example are provided. The improvement of the correlation factors introduced by selecting suitable substrate parameters is about 7% on an average. With the physical insight and design example, the proposed solutions are expected to find applications in the design of printed UWB monopole antennas for better pulse preserving capabilities.

Citation


Qi Wu, Rong-Hong Jin, and Jun-Ping Geng, "Pulse Preserving Capabilities of Printed Circular Disk Monopole Antennas with Different Substrates," Progress In Electromagnetics Research, Vol. 78, 349-360, 2008.
doi:10.2528/PIER07092004
http://jpier.org/PIER/pier.php?paper=07092004

References


    1. Yang, L. and G. B. Giannakis, Ultra-wideband communications: An idea whose time has come, IEEE Sign. Proc. Magaz., Vol. 21, No. 6, 26-54, 2004.

    2. Powell, J. and A. Chandrakasan, "Spiral slot patch antenna and circular disk monopole antenna for 3.1-10.6GHz ultra wideband communication," ISAP 2004, No. 8, 1-10, 2004.

    3. Agrawall, N. P., G. Kumar, and K. P. Ray, "Wide-band planar monopole antennas," IEEE Trans. Antennas Propag., Vol. 46, No. 2, 294-295, 1998.
    doi:10.1109/8.660976

    4. Ammann, M. J., "Control of the impedance bandwidth of wideband planar monopole antennas using a beveling technique," Microw. Opt. Technol. Lett., Vol. 30, No. 4, 229-232, 2001.
    doi:10.1002/mop.1273

    5. Ammann, M. J. and Z. N. Chen, "A wideband shorted planar monopole with bevel," IEEE Trans. Antennas Propag., Vol. 51, No. 4, 901-903, 2003.
    doi:10.1109/TAP.2003.811061

    6. Johnson, J. M. and Y. Rahmat-Samii, "The tab monopole," IEEE Trans. Antennas and Propag., Vol. 45, No. 1, 187-188, 1997.
    doi:10.1109/8.554262

    7. Wu, Q., R. Jin, J. Geng, and M. Ding, "CPW-fed quasi-circular monopole with very wide bandwidth," Electron. Lett., Vol. 43, No. 2, 69-70, 2007.
    doi:10.1049/el:20072304

    8. Wu, Q., R. Jin, J. Geng, and M. Ding, "Compact CPW-fed stacked-circle monopole antenna with very wide bandwidth," Microw. and Opti. Technol. Lett., Vol. 49, No. 5, 1192-1194, 2007.
    doi:10.1002/mop.22377

    9. Guo, L., J. Liang, C. G. Parini, and X. Chen, A time domain study of CPW-fed disk monopole for UWB applications, Proc. Asia-Pacific Microw. Conf., Vol. 1, No. 12, 49-52, 2005.

    10. Liang, J., L. Guo, C. C. Chiau, X. Chen, and C. G. Parini, Study of CPW-fed circular disc monopole antenna for ultra wideband applications, IEE Proc. Microw. Antennas Propag., Vol. 152, No. 6, 520-526, 2005.

    11. Sheng, H., P. Orlik, A. M. Haimovich, L. J. Cimini, and J. Zhang, On the spectral and power requirements for ultra-wideband transmission, Proc. IEEE Int. Conf. Communications, Vol. 1, 738-742, 2003.

    12. Kim, H., D. Park, and Y. Joo, "All-digital low-power CMOS pulse generator for UWB system," Electron. Lett., Vol. 40, No. 24, 1534-1535, 2004.
    doi:10.1049/el:20046923

    13. Liang, J., C. C. Chiau, X. Chen, and C. G. Parini, "Study of a printed circular disc monopole antenna for UWB systems," IEEE Trans. Antennas and Propag., Vol. 53, No. 11, 3500-3504, 2005.
    doi:10.1109/TAP.2005.858598

    14. Guo, L., J. Liang, C. G. Parini, and X. Chen, "Transmitting and receiving characteristics of a CPW-fed disk monopole for UWB applications," IEEE Antennas and Propag. Soc. Int. Symp., No. 7, 1647-1650, 2006.

    15. Bosch, V. D., S. Lambot, M. Acheroy, I. Huynen, and P. Druyts, "Accurate and efficient modeling of monostatic GPR signal of dielectric targets buried in stratified media," J. of Electromagn. Waves and Appl., Vol. 20, No. 3, 283-290, 2006.
    doi:10.1163/156939306775701704

    16. Zaker, R., Ch. Ghobadi, and J. Nourinia, "A modified microstripfed two-steptap ered monopole antenna for UWB and WLAN applications," Progress In Electromagnetics Research, Vol. 77, 137-148, 2007.
    doi:10.2528/PIER07080701

    17. Zhou, H. J., Q. Z. Liu, Y. Z. Yin, and W. B. Wei, "Study of the band-notch function for swallow-tailed planar monopole antennas," Progress In Electromagnetics Research, Vol. 77, 55-65, 2007.
    doi:10.2528/PIER07072506

    18. Ren, W., J. Y. Deng, and K. S. Chen, "Compact PCB monopole antenna for UWB applications," J. of Electromagn. Waves and Appl., Vol. 21, No. 10, 1411-1420, 2007.
    doi:10.1163/156939307783239401

    19. Zhou, H. J., Q. Z. Liu, J. F. Li, and J. L. Guo, "A swallow-tailed wideband planar monopole antenna with semi-elliptical base," J. of Electromagn. Waves and Appl., Vol. 21, No. 9, 1257-1264, 2007.