Vol. 77

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2007-09-14

Central Force Optimization: a New Metaheuristic with Applications in Applied Electromagnetics

By Richard Formato
Progress In Electromagnetics Research, Vol. 77, 425-491, 2007
doi:10.2528/PIER07082403

Abstract

Central Force Optimization (CFO) is a new deterministic multi-dimensional search metaheuristic based on the metaphor of gravitational kinematics. It models "probes" that "fly" through the decision space by analogy to masses moving under the influence of gravity. Equations are developed for the probes' positions and accelerations using the analogy of particle motion in a gravitational field. In the physical universe, objects traveling through threedimensional space become trapped in close orbits around highly gravitating masses, which is analogous to locating the maximum value of an objective function. In the CFO metaphor, "mass" is a userdefined function of the value of the objective function to be maximized. CFO is readily implemented in a compact computer program, and sample pseudocode is presented. As tests of CFO's effectiveness, an equalizer is designed for the well-known Fano load, and a 32-element linear array is synthesized. CFO results are compared to several other optimization methods.

Citation


Richard Formato, "Central Force Optimization: a New Metaheuristic with Applications in Applied Electromagnetics," Progress In Electromagnetics Research, Vol. 77, 425-491, 2007.
doi:10.2528/PIER07082403
http://jpier.org/PIER/pier.php?paper=07082403

References


    1. Kennedy, J. and R. Eberhart, Particle swarm optimization, Proc. IEEE Conf. On Neural Networks, Vol. 4, No. 12, 1942-1948, 1995.

    2. Special Issue on Particle Swarm Optimization, IEEE Trans. Evol. Comp., Jun. 2004., Vol. 8, No. 3, 2004.

    3. Dorigo, M., M. Birattari, and T. Stutzle, "Ant colony optimization," IEEE Comp. Intell. Mag., Vol. 1, No. 4, 28-39, 2006.

    4. Special Section on Ant Colony Optimization, IEEE Trans. Evol. Comp., Aug. 2002., Vol. 6, No. 4, 2002.

    5. Marion, J., Classical Dynamics of Particles and Systems, 2nd edition, §2.7, Harcourt Brace Jovanovich, New York, NY, 1970.

    6. Brand, L., Differential and Difference Equations, §56, John Wiley & Sons, Inc., New York, NY, 1966.

    7. Power Basic, Inc., http://www.powerbasic.com.

    8. Fano, F., "Theoretical limitations on the broadband matching of arbitrary impedances," J. Franklin Inst., Vol. 249, No. 2, 139-154, 1950.
    doi:10.1016/S0016-0032(50)91101-X

    9. Rodriguez, J., I. García-Tu˜n´on, J. Taboada, and F. Basteiro, "Broadband HF antenna matching network design using a realcoded genetic algorithm," IEEE Trans. Ant. Propag., Vol. 55, No. 3, 611-618, 2007.
    doi:10.1109/TAP.2007.891546

    10. Carlin, H., "A new approachto gain-bandwidthproblems," IEEE Trans. Circuits Syst., Vol. CAS-24, No. 4, 170-175, 1977.
    doi:10.1109/TCS.1977.1084325

    11. Dedieu, H., C. Dehollain, J. Neirynck, and G. Rhodes, "A new method for solving broadband matching problems," IEEE Trans. Circuits Syst. I, Vol. 41, No. 9, 561-570, 1994.
    doi:10.1109/81.317955

    12. Rajo-Iglesias, E. and O. Quevedo-Teruel, "Linear array synthesis using an ant-colony-optimization-based algorithm," IEEE Ant. Prop. Mag., Vol. 49, No. 2, 70-79, 2007.
    doi:10.1109/MAP.2007.376644

    13. Balanis, C., Antenna Theory: Analysis and Design, §6.4, Harper & Row, Publishers, New York, NY, 1982.

    14. Yao, X., Y. Liu, and G. Lin, "Evolutionary programming made faster," IEEE Trans. Evolutionary Computation, Vol. 3, No. 2, 82-102, 1999.
    doi:10.1109/4235.771163

    15. Emmerich, M. T. M., K. C. Giannakoglou, and B. Naujoks, "Single-and multiobjective evolutionary optimization assisted by Gaussian random field metamodels," IEEE Trans. Evolutionary Computation, Vol. 10, No. 4, 421-439, 2006.
    doi:10.1109/TEVC.2005.859463

    16. Doo-Hyun and O. Se-Young, "A new mutation rule for evolutionary programming motivated from backpropagation learning," IEEE Trans. Evolutionary Computation, Vol. 4, No. 2, 188-190, 2000.
    doi:10.1109/4235.850659

    17. Chen, T., Y. Dong, Y. Jiao, and F. S. Zhang, "Synthesis of circular antenna array using crossed particle swarm optimization algorithm," J. of Electromagn. Waves and Appl., Vol. 20, No. 13, 1785-1795, 2006.
    doi:10.1163/156939306779292273

    18. Lee, K.-C. and J.-Y. Jhang, "Application of particle swarm algorithm to the optimization of unequally spaced antenna arrays," J. of Electromagn. Waves and Appl., Vol. 20, No. 14, 2001-2012, 2006.
    doi:10.1163/156939306779322747

    19. Lu, Y.-Q. and J.-Y. Li, "Optimization of broadband top-loaded antenna using micro-genetic algorithm," J. of Electromagn. Waves and Appl., Vol. 20, No. 6, 793-801, 2006.
    doi:10.1163/156939306776143370

    20. Ayestaran, R. Laviada, and F. Las-Heras, "Synthesis of passivedipole arrays witha genetic-neural hybrid method," J. of Electromagn. Waves and Appl., Vol. 20, No. 15, 2123-2135, 2006.
    doi:10.1163/156939306779322549

    21. Mitilineos, S., S. Thomopoulos, and C. Capsalis, "Genetic design of dual-band, switched-beam dipole arrays, with elements failure correction, retaining constant excitation coefficients," J. of Electromagn. Waves and Appl., Vol. 20, No. 14, 1925-1942, 2006.
    doi:10.1163/156939306779322738

    22. Tian, Y. and J. Qian, "Ultraconveniently finding multiple solutions of complex transcendental equations based on genetic algorithm," J. of Electromagn. Waves and Appl., Vol. 20, No. 4, 475-488, 2006.
    doi:10.1163/156939306776117090

    23. Capozzoli, A. and G. D'Elia, "Global optimization and antennas synthesis and diagnosis, Part one: concepts, tools, strategies and performances," Progress In Electromagnetics Research, Vol. 56, 195-232, 2006.
    doi:10.2528/PIER04123001

    24. Capozzoli, A. and G. D'Elia, "Global optimization and antennas synthesis and diagnosis, Part two: applications to advanced reflector antennas synthesis and diagnosis techniques," Progress In Electromagnetics Research, Vol. 56, 233-261.
    doi:10.2528/PIER05032503

    25. Chen, X., X., T. Grzegorczyk, and J. A. Kong, "Optimization approach to the retrieval of the constitutive parameters of a slab of general bianisotropic medium," Progress In Electromagnetics Research, Vol. 60, 1-18, 2006.
    doi:10.2528/PIER05120601

    26. Donelli, M., S. Caorsi, F. De Natale, M. Pastorino, and A. Massa, "Linear antenna synthesis with a hybrid genetic algorithm," Progress In Electromagnetics Research, Vol. 49, 1-22, 2004.
    doi:10.2528/PIER03121301

    27. Inman, M., J. Earwood, A. Elsherbeni, and C. Smith, "Bayesian optimization techniques for antenna design," Progress In Electromagnetics Research, Vol. 49, 71-86, 2004.
    doi:10.2528/PIER04021302

    28. Sijher, T. and A. Kishk, "Antenna modeling by infinitesimal dipoles using genetic algorithms," Progress In Electromagnetics Research, Vol. 52, 225-254, 2005.
    doi:10.2528/PIER04081801

    29. Misra, I. S., R. Chakrabarty, and B. Mangaraj, "Design, analysis and optimization of V-dipole and its three-element Yagi-Uda array," Progress In Electromagnetics Research, Vol. 66, 137-156, 2006.
    doi:10.2528/PIER06102604

    30. Formato, R., TX 6-459-271, TX 6-461-552, TX 6-468-062, TX 6-464-965, TX 6-522-082, TX 6-540-042, Copyright Office, U.S. Library of Congress, Washington D. C., 2006.