Vol. 77

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2007-08-30

A Novel and Compact UWB Bandpass Filter Using Microstrip Fork-Form Resonators

By Hui Chen and Yu-Xing Zhang
Progress In Electromagnetics Research, Vol. 77, 273-280, 2007
doi:10.2528/PIER07082302

Abstract

A novel and compact ultra wideband (UWB) bandpass filter (BPF) with two transmission zeros near both passband edges of lower and higher frequency is proposed by using a new structure of fork-formresonators. The fork-formresonator generates a attenuation pole at the higher passband edge, lower insertion loss, wider bandwidth and compacter dimension, as compared with the traditional parallel unilateral-coupled resonator. A microstrip bandpass filter cascaded by two stages fork-formresonators with a 3-dB fractional bandwidth of 128% (from1.0 GHz to 4.6 GHz) is designed, fabricated, and tested. The measured characteristics of the filter agree with the theoretical simulations, and the measured results show good specifications which are very low insertion loss 0.5±0.3 dB within the passband and good return loss less than −15 dB from1.5 GHz to 4.0 GHz, respectively.

Citation


Hui Chen and Yu-Xing Zhang, "A Novel and Compact UWB Bandpass Filter Using Microstrip Fork-Form Resonators," Progress In Electromagnetics Research, Vol. 77, 273-280, 2007.
doi:10.2528/PIER07082302
http://jpier.org/PIER/pier.php?paper=07082302

References


    1. Skolnik, M., G. Andrews, and J. P. Hansen, "Ultra wideband microwave-radar conceptual design," IEEE Trans. Aerosp. Electron. Syst., Vol. 10, 25-30, 1995.

    2. Hamalainen, M., V. Hovinen, R. Tesi, J. H. J. Iinatti, and M. Latva-Aho, "On the UWB systemco existence with GSM 900, UMTS/WCDMA, and GPS," IEEE J. Sel. Area Commun., Vol. 20, 1712-1721, 2002.
    doi:10.1109/JSAC.2002.805242

    3. Kharakhili, F. G., M. Fardis, G. Dadashzadeh, and A. Ahmadi, "Circular slot with a novel circular microstrip open ended microstrip feed for UWB applications," Progress In Electromagnetics Research, Vol. 68, 161-167, 2007.
    doi:10.2528/PIER06071901

    4. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 11, 796-798, 2005.
    doi:10.1109/LMWC.2005.859011

    5. Gorur, A. and C. Karpuz, "Uniplanar compact wideband bandstop filter," IEEE Microwave Wireless Component Letter, Vol. 13, 114-116, 2003.
    doi:10.1109/LMWC.2003.810114

    6. Prabhu, S. and J. S. Mandeep, "Microstrip bandpass filter at S band using capacitive coupled resonator," Progress In Electromagnetics Research, Vol. 76, 223-228, 2007.
    doi:10.2528/PIER07071205

    7. Xiao, J.-K. and Y. Li, "Novel compact microstrip square ring bandpass filter," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1817-1826, 2006.
    doi:10.1163/156939306779292156

    8. Fan, J.-W., C.-H. Liang, and X.-W. Dai, "Design of cross-coupled dual-band filter with equal-length spilt-ring resonators," Progress In Electromagnetics Research, Vol. 75, 285-293, 2007.
    doi:10.2528/PIER07060904

    9. Nguyen, C., "Accurate equation for determining resonator length in half-wavelength parallel-coupled bandpass filter," Electronics Letters, Vol. 29, No. 6, 532-533, 1993.
    doi:10.1049/el:19930355

    10. Cohn, S. B., "Parrallel coupled transmission line resonator filters," IEEE Trans. Microwave Theory Tech., Vol. MTT-6, 223-231, 1958.
    doi:10.1109/TMTT.1958.1124542

    11. Kajfez, D. and S. Govind, "Effect of difference in odd-and even-mode wavelengths on a parallel-coupled bandpass filter," Electronics Letters, Vol. 11, No. 5, 117-118, 1975.
    doi:10.1049/el:19750088

    12. Lin, C. J., C.-C. Chiu, S.-G. Hsu, and H. C. Liu, "A novel model extraction algorithmfor reconstruction of coupled transmission lines in high-speed digital system," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 12, 1595-1609, 2005.
    doi:10.1163/156939305775537393

    13. Wang, B.-Z., X.-H. Wang, and J.-S. Hong, "On the generalized transmission-line theory," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 3, 413-425, 2005.
    doi:10.1163/1569393054139697

    14. Matsunaga, M., M. Katayama, and K. Yasumoto, "Coupled-mode analysis of line parameters of coupled microstrip lines," Progress In Electromagnetics Research, Vol. 24, 1-17, 1999.
    doi:10.2528/PIER99032902

    15. Tripathi, V. K., "Asymmetric coupled transmission lines in an inhomogeneous medium," IEEE Trans. Microwave Theory Tech., Vol. MTT-23, No. 9, 734-739, 1975.
    doi:10.1109/TMTT.1975.1128665

    16. Chen, H. and Y.-X. Zhang, "A novel compact planar six-way power divider using folded and hybrid-expanded coupled lines," Progress In Electromagnetics Research, Vol. 76, 243-252, 2007.
    doi:10.2528/PIER07070601

    17. Tripathi, V. K., "On the analysis of symmetrical three-line microstrip circuits," IEEE Trans. Microwave Theory Tech., Vol. 25, No. 9, 726-729, 1977.
    doi:10.1109/TMTT.1977.1129202

    18. Tripathi, V. K., Y. K. Chin, H. S. Chang, and N. Orhanovic, Coupled line multiports, Proc. IEEE Int. Symp. Circuits Syst., Vol. 2, No. 5, 1021-1024, 1992.

    19. Kollipara, R. T., et al., "Modeling and design of interdigital structure," IEEE Trans. Electron Devices, Vol. 38, No. 11, 575-577, 1991.
    doi:10.1109/16.97430

    20. Zhu, Y.-Z., Y.-J. Xie, and H. Feng, "Novel microstrip bandpass filters with transmission zeros," Progress In Electromagnetics Research, Vol. 77, 29-41, 2007.
    doi:10.2528/PIER07072301