Vol. 78

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2007-09-20

Tunability of Granular Ferroelectric Dielectric Composites

By Liisi Jylha and Ari Sihvola
Progress In Electromagnetics Research, Vol. 78, 189-207, 2008
doi:10.2528/PIER07081502

Abstract

Electrical tunability of a composite consisting of small ferroelectric spheres randomly dispersed into a dielectric background is studied. A new method to calculate the effective permittivity of such a nonlinear composite is introduced. The method is based on the Bruggeman effective medium theory and a specific model for the nonlinear permittivity of the ferrite. The resulting tunability (defined as a measure of the change in the permittivity due to the bias field) is a continuous function of the volume fraction of the ferroelectric material phase in the composite. As an example,SrTiO3 is studied with two different nontunable background materials.

Citation

 (See works that cites this article)
Liisi Jylha and Ari Sihvola, "Tunability of Granular Ferroelectric Dielectric Composites," Progress In Electromagnetics Research, Vol. 78, 189-207, 2008.
doi:10.2528/PIER07081502
http://jpier.org/PIER/pier.php?paper=07081502

References


    1. Guerin, F., "Micr owave chiral materials: a reviw of experimental studies and some results on composites with ferroelectric ceramic inclusions," Progress In Electromagnetics Research, Vol. 9, 219-263, 1994.

    2. Huang. C.-C., "Analysis of multiconduction transmission lines with nonlinear terminations in frequency domain," J. of Electromagn. Waves and Appl., Vol. 19, No. 8, 1069-10832005, 1069.
    doi:10.1163/156939305775526142

    3. Wang, X.-H. and B.-Z. Wang, "Generalized transmission line theory for parallel planar transmission lines," J. of Electromagn. Waves and Appl., Vol. 19, No. 9., 1171-1181, 2005.
    doi:10.1163/156939305775526025

    4. Sengupta, L. C. and S. Sengupta, "Breakthrough advantages in low loss,tunable dielectric materials," Mat. Res. Innovat., Vol. 2, 278-282, 1999.
    doi:10.1007/s100190050098

    5. Chen, Y., X. Dong, J. Li, and Y. Wang, "Dielectric properties of Ba0.6Sr0.4TiO3/Mg2SiO4/MgO composite ceramics," J. Appl. Phys., Vol. 98, 2005.

    6. Tummala, R., "Ceramic and glass-ceramic packaging in the 1990s," J. Am. Cer. Soc., Vol. 74, 895-908, 1991.
    doi:10.1111/j.1151-2916.1991.tb04320.x

    7. Barnwell, P., W. Zhang, J. Lebowitz, K. Jones, N. MacDonald, C. Free, and Z. Tian, An investigation of the properties of LTCC materials and compatible conductors for their use in wireless applications, Proc. International Symposium on Microelectronics, 659-664, 2000.

    8. Hakeem, N. A., H. I. Abdelkader, N. A. El-sheshtawi, and I. S. Eleshmawi, "Sp ectroscopic,thermal and electrical investigations of PVDF films filled with BiCl3," J. Appl. Pol. Sci., Vol. 102, 2125-2131, 2006.
    doi:10.1002/app.24135

    9. Xu, H., J. Zhong, X. Liu, J. Chen, and D. Shen, "F erroelecric and switching behavior of poly(vinyliden fluoride-trifluoroethylene) copolymer ultrathin films with polypyrrole interface," Appl. Phys. Lett., Vol. 90, 2007.

    10. Shynu, S. V., G. Augustin, C. K. Aanandan, P . Mohanan, and K. Vasudevan, "Design of compact reconfigurable dual frequency microstrip antennas using varactor diodes," Progress In Electromagnetics Research, Vol. 60, 197-205, 2006.
    doi:10.2528/PIER05120101

    11. Zheng, Q.-R., B.-Q. Lin, Y.-Q. Fu, and N.-C. Yuan, "Characteristics and applications of a novel compact spiral electromagnetic band-gap (EBG) structure," J. of Electromagn. Waves and Appl., Vol. 21, No. 2, 199-213, 2007.
    doi:10.1163/156939307779378844

    12. Lee, S.-W., Y. Kuga, and A. Ishimaru, "Quasi-static analysis of metamaterials with small tunable stacked split ring resonators," Progress In Electromagnetics Research, Vol. 51, 219-229, 2005.
    doi:10.2528/PIER04020602

    13. Irvin, P., J. Levy, R. Guo, and A. Bhalla, "Three-dimensional polarization imaging of (Ba,Sr)TiO3:MgO composites," Appl. Phys. Lett., Vol. 86, 2005.
    doi:10.1063/1.1854722

    14. Astafiev, K. F., V. O. Sherman, A. K. Tagantsev, and N. Setter, "Can the addition of a dielectric improve the figure of merit of a tunable material?'' J. Eur. Cer. Soc.," ``Can the addition of a dielectric improve the figure of merit of a tunable material? J. Eur. Cer. Soc., Vol. 23, 2381-2386, 2003.

    15. Mokry, P., A. K. Tagantsev, and N. Setter, "Size effect on permittivity in ferroelectric polydomain thin films," Phys. Rev. B, Vol. 70, 2004.
    doi:10.1103/PhysRevB.70.172107

    16. Sherman, V. O., A. K. Tagantsev, N. Setter, D. Iddles, and T. Price, "F erroelectric-dielectric tunable composites," J. Appl. Phys., Vol. 99, 2006.
    doi:10.1063/1.2186004

    17. Stround, D. and P. M. Hui, "Nonlinear susceptibilities of granular matter," Phys. Rev. B, Vol. 37, 8719-8724, 1988.
    doi:10.1103/PhysRevB.37.8719

    18. Stround, D. and V. E. Wood, "Decoupling approximation for the nonlinear-optical response of composite media," J. Opt. Soc. Am. B, Vol. 6, 778-786, 1989.

    19. Bergman, D. J., "Nonlinear behavior and 1/f noise near a conductivity threshold: Effects of local microgeometry," Phys. Rev. B, Vol. 39, 4589-4609, 1989.

    20. Vendik, O. G. and S. P. Zubko, "Mo deling the dielectric response of incipient ferroelectrics," J. Appl. Phys., Vol. 82, 4475-4483, 1997.
    doi:10.1063/1.366180

    21. Garboczi, E. J., K. A. Snyder, and J. F. Douglas, "Geometrical percolation threshold of overlapping ellipsoids," Phys. Rev. E, Vol. 52, 819-828, 1995.
    doi:10.1103/PhysRevE.52.819

    22. Sihvola, A., Electromagnetic Mixing Formulas and Applications, IEE ElectromagneticWaves Series 47, The Institution of Electrical Engineers, 1999.

    23. Vendik, I. B., O. G. Vendik, and E. L. Kollberg, "Comm utation quality factor of two-state switchable devices," IEEE Trans. on Micr. Theor. and Techn., Vol. 48, 802-808, 2000.
    doi:10.1109/22.841874

    24. Chowdhuri, P., T. Bement, C. Espinoza, and G. Weeks, DC break down strength of dielectric materials at gyrogenic temperatures, Proc. of 7th IEEE/PES Transmission and Distribution Conference and Exposition, 140-147, 1979.

    25. Duan, C., R. F. Sabirianov, W. Mei, S. S. Jaswal, and E. Y. Tsymbal, "In terface effect on ferroelectricity at the nanoscale," Nano Letters, Vol. 6, 483-487, 2006.
    doi:10.1021/nl052452l

    26. Sherman, V. O., A. K. Tagantsev, and N. Setter, T unability and loss of the ferroelectric-dielectric composites, IEEE International Ultrasonics, 33-38, 2004.

    27. Gallop, J. and L. Hao, "Single crystal microwave dielectrics at low temperature: losses and non-linearities," J. Eur. Cer. Soc., Vol. 23, 2367-2373, 2003.
    doi:10.1016/S0955-2219(03)00341-8

    28. Herring, C., J. Appl. Phys., and Vol. 31, 1939, Vol. 31, 1960., 1960.

    29. Jacob, V., J. Mazierska, K. Leong, and J. Krupka, "Micro wave properties of low-loss polymers at cryogenic temperatures," IEEE Trans. Micr. Theor. Techn., Vol. 50, 474-480, 2002.
    doi:10.1109/22.982226