Vol. 76
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-07-20
Bistatic Scattering from Rough Dielectric Soil Surface with a Conducting Object with Arbitrary Closed Contour Partially Buried by Using the FBM/SAA Method
By
, Vol. 76, 253-274, 2007
Abstract
A hybrid approach of the forward-backward method (FBM) with spectral accelerate algorithm (SAA) and Monte Carlo method is developed in this paper. It is applied to numerical simulation of bistatic scattering from one-dimensional arbitrary dielectric constant soil surface with a conducting object with arbitrary closed contour partially buried under both the horizontal and vertical polarization tapered wave incidence at low grazing angle. The energy conservation has been checked for the FBM/SAA. Numerical simulations of bistatic scattering at low grazing angle have been discussed in this paper.
Citation
Zhong-Xin Li, "Bistatic Scattering from Rough Dielectric Soil Surface with a Conducting Object with Arbitrary Closed Contour Partially Buried by Using the FBM/SAA Method," , Vol. 76, 253-274, 2007.
doi:10.2528/PIER07071501
References

1. Holliday, D., L. L. DeRaad, and G. J. St-Cyr, "Forward-backward: A new method for computing low-grazing angle scattering," IEEE Trans. on Anten. and Propagat., Vol. 44, No. 5, 722-729, 1996.
doi:10.1109/8.496263

2. Kapp, D. A. and G. S. Brown, "A new numerical method for rough surface scattering calculations," IEEE Trans. on Anten. and Propagat., Vol. 44, No. 5, 711-721, 1996.
doi:10.1109/8.496258

3. Chou, H. T. and J. T. Johnson, "A novel acceleration algorithm for the computation of scattering, from rough surfaces with the forward-backwards method," Radio Science, Vol. 33, No. 5, 1277-1287, 1998.
doi:10.1029/98RS01888

4. Li, Z. X. and Y. Q. Jin, "Numerical simulation of bistatic scattering from a fractal rough surface using the forward-backward method," Electromagnetics, Vol. 22, No. 3, 191-207, 2002.
doi:10.1080/02726340252886465

5. Holliday, D., L. L. DeRaad, and G. J. St-Cyr, "Forward-backward method for scattering from imperfect conductors," IEEE Trans. on Anten. and Propagat., Vol. 46, No. 1, 101-107, 1998.
doi:10.1109/8.655456

6. Chou, H. T. and J. T. Johnson, "Formulation of forward-backward method using novel spectral acceleration for the modeling of scattering from impedance rough surfaces," IEEE Transactions on Geosicence and Remote Sensing, Vol. 38, No. 1, 605-607, 2000.
doi:10.1109/36.823954

7. Burkholder, R. J. and T. Lundin, "Forward-backward iterative physical optics algorithm for computing the RCS of openended cavities antennas and propagation," IEEE Trans. on Anten. and Propagat., Vol. 53, No. 2, 793-799, 2005.
doi:10.1109/TAP.2004.841317

8. Zhang, P. F. and S. X. Gong, "Improvement on the forwardbackward iterative physical optics algorithm applied to computing the RCS of large open-ended cavities," Journal of Electromagnetic Wave and Application, Vol. 21, No. 4, 457-469, 2007.
doi:10.1163/156939307779367297

9. Jin, Y. Q. and Z. X. Li, "Bistatic scattering and transmission through a fractal rough dielectric surface using the forward and backward method with spectrum acceleration algorithm," Journal of Electromagnetic Wave and Application, Vol. 16, No. 4, 551-572, 2002.
doi:10.1163/156939302X00444

10. Li, Z. X. and Y. Q. Jin, "Bistatic scattering and transmitting through a fractal rough surface with high permittivity using the physics-based two-grid method in conjunction with the forwardbackward method and spectrum acceleration algorithm," IEEE Trans. on Anten. and Propagat., Vol. 50, No. 9, 1323-1327, 2002.
doi:10.1109/TAP.2002.802166

11. Iodice, A., "Forward-backward method for scattering from dielectric rough surface," IEEE Trans. on Anten. and Propagat., Vol. 50, No. 7, 901-911, 2002.
doi:10.1109/TAP.2002.800700

12. Iodice, A., "Scattering from natural soils modeled by dielectric fractal profile: the Forward-backward approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 1, 77-85, 2004.
doi:10.1109/TGRS.2003.816664

13. Pino, M. R., L. Landesa, J. L. Rodriguez, et al. "The generalized Forward-Backward method for analyzing the scattering from targets on ocean-like rough surfaces," IEEE Trans. on Anten. and Propagat., Vol. 47, No. 6, 961-968, 1999.
doi:10.1109/8.777118

14. Pino, M. R., R. J. Burkholder, F. Obelleiro, et al. "Fast generalized forward-backward method by using a spectral acceleration," Antennas and Propagation Society International Symposium, Vol. 2, 11-16, 1999.

15. Wang, X., C. F. Wang, and Y. B. Gan, "Electromagnetic scattering from a circular target above or below rough surface," Progress In Electromagnetics Research, Vol. 40, 207-227, 2003.
doi:10.2528/PIER02111901

16. Xu, X. B. and C. M. Butler, "Current induced by TE excitation on coupled and partially buried cylinder at the interface between two media," IEEE Trans. on Anten. and Propagat., Vol. 38, No. 11, 1823-1828, 1990.
doi:10.1109/8.102745

17. Mallahzadeh, A. R. and M. Soleimani, "Scattering computation from the target with lossy background," Progress In Electromagnetic Research, Vol. 57, 151-163, 2006.
doi:10.2528/PIER05070503

18. Zhang, Y. J. and E. P. Li, "Scattering of three-dimensional chiral objects above a perfect conducting plane by hybrid finite element method," Journal of Electromagnetic Wave and Application, Vol. 19, No. 11, 1535-1546, 2005.
doi:10.1163/156939305775701813

19. Chiu, T. and K. Sarabandi, "Electromagnetic scattering interaction between a dielectric cylinder and a slight rough surface," IEEE Trans. on Anten. and Propagat., Vol. 47, No. 10, 902-913, 1999.
doi:10.1109/8.774155

20. Liu, P. and Y. Q. Jin, "The finite element method with domian decomposition for electromagnetic bistatic scattering from the comprehensive model of a ship on and a target above a large scale rough sea surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 5, 950-956, 2004.
doi:10.1109/TGRS.2004.825583

21. Jin, Y. Q. and Z. X. Li, "Numerical simulation of radar survellance for the ship targer and oceanic clutters in two-dimensional model," Radio Science, Vol. 38, No. 3, 11-1, 2003.
doi:10.1029/2002RS002692

22. Jin, Y. Q. and Z. X. Li, "Simulation of scattering from complex rough surface at low grazing angle using the GFBM/SAA method," IEE J. Transactions of Fundamentals and Materials Society (A), Vol. 121, No. 10, 917-921, 2001.

23. Pino, M. R., R. J. Burkdolder, and F. Obelleiro, "Spectral acceleration of the generalized forward-backward method," IEEE Trans. on Anten. and Propagat., Vol. 50, No. 6, 785-797, 2002.
doi:10.1109/TAP.2002.1017658

24. Adams, R. J. and G. S. Brown, "A combined field approach to scattering from infinite elliptical cylinders using the method of ordered multiple interactions," IEEE Trans. on Anten. and Propagat., Vol. 47, No. 2, 364-375, 1999.
doi:10.1109/8.761077

25. Adams, R. J. and G. S. Brown, "A rapidly convergent iterative method for two-dimensional closed-body scattering problems," Microwave and Optical Technology Letters, Vol. 20, No. 3, 179-183, 1999.
doi:10.1002/(SICI)1098-2760(19990205)20:3<179::AID-MOP9>3.0.CO;2-5

26. Li, Z. X., "Bistatic scattering from rough dielecreic soil surface with a conducting object partially buried by using the GFBM/SAA method," IEEE Trans. on Anten. and Propagat., Vol. 54, No. 7, 2072-2080, 2006.
doi:10.1109/TAP.2006.877187

27. Kong, J. A., Electromagnetic Wave Theory, 2nd edition, New York, Wiley, 1990.

28. Harrington, R. F., Field Computation by Moment Method, IEEE Press, New York, 1993.

29. Mandelbrot, B. B., The Fractal Geometry of Nature, Freeman, San Fancisco, CA, 1983.

30. Franceschetti, G., A. Iodice, M. Migliaccio, and D. Riccio, "Fractals and small perturbation scattering model," Radio Science, Vol. 34, No. 5, 1043-1054, 1999.
doi:10.1029/1999RS900053

31. Jaggard, D. L. and X. Sun, "Scattering from fractally corrugated surfaces," Journal of the Optical Society of American, Vol. 7, No. 6, 1055-1062, 1990.

32. Manninen, A. T., "Multiscale surface roughness and backscattering," Progress In Electromagnetic Research, Vol. 16, 175-203, 1997.
doi:10.2528/PIER96060700

33. Davidson, M. W. J., T. L. Toan, F. Mattia, et al. "On the characterization of agricultural soil roughness for radar remote sensing studies," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, 630-640, 2000.
doi:10.1109/36.841993

34. Chan, C. H., L. Tsang, and Q. Li, "Monte Carlo simulation of large-scale one-dimenrional random surface scattering at neargrazing incidence: Penetrable case," IEEE Trans. on Anten. and Propagat., Vol. 46, No. 3, 142-149, 1998.
doi:10.1109/8.655461

35. Sancchez-Gil, J. A. and M. Nieto-Vesperinas, "Light scattering from random rough dielectric surface," Journal of the Optical Society of America A, Vol. 8, No. 8, 1270-1286, 1991.