Vol. 71

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2007-03-14

Single-Series Solution to the Radiation of Loop Antenna in the Presence of a Conducting Sphere

By Constantinos Valagiannopoulos
Progress In Electromagnetics Research, Vol. 71, 277-294, 2007
doi:10.2528/PIER07030803

Abstract

A ring source of arbitrary current backed by a perfectly conducting sphere is analyzed through Green's function formulation. The infinite double sum of the Green's function is written in terms of a single series by performing a transformation of the coordinate system. The resulting form is used for the numerical evaluation of the scattering integral. The operation of the coupled loop-sphere structure is understood via the discussion of several numerical results.

Citation

 (See works that cites this article)
Constantinos Valagiannopoulos, "Single-Series Solution to the Radiation of Loop Antenna in the Presence of a Conducting Sphere," Progress In Electromagnetics Research, Vol. 71, 277-294, 2007.
doi:10.2528/PIER07030803
http://jpier.org/PIER/pier.php?paper=07030803

References


    1. Werner, D. H., "An exact integration procedure for vector potential of thin circular loop antennas," IEEE Trans. Antennas Propag., Vol. 44, No. 2, 157-165, 1996.
    doi:10.1109/8.481642

    2. Anastassiu, H. T., "Fast, simple and accurate computation of the currents on an arbitrarily large circular loop antenna," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 860-866, 2006.
    doi:10.1109/TAP.2006.869929

    3. Werner, D. H., "Near-field and far-field expansions for travelingwave circular loop antennas," Progress In Electromagnetics Research, Vol. 28, 29-42, 2000.
    doi:10.2528/PIER99100103

    4. Yin, W. Y., G. H. Nan, and I.Wolff, "Electromagnetic fields of two thin circular loop antennas in a radially multilayered biisotropic cylinder," Progress In Electromagnetics Research, Vol. 21, 247-272, 1999.
    doi:10.2528/PIER98080702

    5. Yin, W. Y., L. W. Li, T. S. Yeo, and M. S. Leong, "Electromagnetic fields of a thin circular loop antenna above a (un)grounded multilayered chiral slabs," Progress In Electromagnetics Research, Vol. 30, 131-156, 2001.
    doi:10.2528/PIER00031304

    6. Li, K., H. Q. Zhang, and W. Y. Pan, "The VLF field on the sea surface generated by the space borne loop antenna," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 1, 121-135, 2004.
    doi:10.1163/156939304322749715

    7. Felsen, L. B., "Radiation from ring sources in the presence of a semi-infinite cone," IRE Trans. Antennas Propag., Vol. 7, No. 4, 168-180, 1959.
    doi:10.1109/TAP.1959.1144663

    8. Lindell, I. V., E. A. Lehtola, and K. I. Nikoskinen, "Magnetostatic image theory for an arbitrary current loop in front of a permeable sphere," IEEE Trans. Magnetics, Vol. 29, No. 5, 2202-2206, 1993.
    doi:10.1109/20.231621

    9. Yin, W. Y., G. H. Nan, and I. Wolff, "The near and far field distributions of a thin circular loop antenna in a radially multilayered biisotropic sphere," Progress In Electromagnetics Research, Vol. 21, 103-135, 1999.
    doi:10.2528/PIER98042701

    10. Li, W. C., M. S. Leong, P. N. Jiao, and W. X. Zhang, "Analysis of a passive circular loop antenna radiating in the presence of a layered chiral sphere using method of moments," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 11, 1593-1611, 2002.

    11. Li, L. W., M. S. Yeo, and M. S. Leong, "Method of moments analysis of EM fields in a multilayered spheroid radiated by a thin circular loop antenna," IEEE Trans. Antennas Propag., Vol. 52, No. 9, 2391-2402, 2004.
    doi:10.1109/TAP.2004.834018

    12. Erma, V. A., "Exact solution for the scattering of electromagnetic waves from conductors of arbitrary shape. II. General case," Physical Review, Vol. 176, No. 5, 1544-1553, 1968.
    doi:10.1103/PhysRev.176.1544

    13. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, 437-438, 437-438, National Bureau of Standards, Washington D.C., 1970.

    14. Stratton, J. A., Electromagnetic Theory, 392-393, 392-393, McGraw-Hill, New York, 1941.

    15. Tai, C. T., Dyadic Green Functions in Electromagnetic Theory, 55-58, 55-58, 48, 66, IEEE Press, New York, 1994.

    16. Coxeter, H. S. and S. L. Greitzer, Geometry Revisited, 82-85, 82-85, Mathematical Association of America, Washington D.C., 1967.

    17. Balanis, C. A., Antenna Theory, 217-224, 217-224, John Wiley & Sons, New York, 1997.