Vol. 66

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2006-12-17

Planar Metamaterials Supporting Multiple Left-Handed Modes

By Yunnchuan Guo and Rui-Min Xu
Progress In Electromagnetics Research, Vol. 66, 239-251, 2006
doi:10.2528/PIER06113001

Abstract

Planar metamaterials with spiral elements are suggested in this paper to support multiple left-handed (LH) modes. Compared with previously proposed split-loop metamaterial, spiral arrays are found to support hybrid TE and TM LH modes. Dispersion diagrams and field distributions are carried out to demonstrate the existence of the hybrid LH modes. Array with double-spiral elements can be viewed as a spiral split-loop array, which leads a very interesting dual-LH-band feature. It can be explained as a combination of spiral and split-ring arrays has similar mechanism with the multiband frequency selective surfaces (FSS), which have multiple resonators in a single unit cell. The two LH modes are TE and TM modes respectively. Validations of the multiple LH modes are presented by means of full-wave simulation using commercial software (Ansoft HFSS).

Citation

 (See works that cites this article)
Yunnchuan Guo and Rui-Min Xu, "Planar Metamaterials Supporting Multiple Left-Handed Modes," Progress In Electromagnetics Research, Vol. 66, 239-251, 2006.
doi:10.2528/PIER06113001
http://jpier.org/PIER/pier.php?paper=06113001

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
    doi:10.1109/22.798002

    3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
    doi:10.1103/PhysRevLett.84.4184

    4. Eleftheriades, G. V., A. Iyer, and P. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 12, 2702-2711, 2002.
    doi:10.1109/TMTT.2002.805197

    5. Caloz, C., H. Okabe, I. Awai, and T. Itoh, "Transmission line approach of left-handed materials," IEEE AP-S USNC/URSI National Radio Science Meeting Digest, No. 6, 2002.

    6. Oliner, "A periodic structure negative refractive index medium without resonant elements," IEEE AP-S USNC/URSI National Radio Science Meeting Digest, No. 6, 2002.

    7. Grbic and G. V. Eleftheriades, "Periodic analysis of a 2- D negative refractive index transmission line structure," IEEE Trans. Antennas andPr opag., Vol. 51, No. 10, 2604-2611, 2003.
    doi:10.1109/TAP.2003.817543

    8. Sanada, A., C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive index," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 4, 1252-1263, 2004.
    doi:10.1109/TMTT.2004.825703

    9. Sanada, A., M. Kimura, I. Awai, H. Kubo, C. Caloz, and T. Itoh, A planar zeroth order resonator antenna using left-handed transmission line, European Microwave Conference Digest, Vol. 2, No. 10, 1341-1344, 2004.

    10. Lim, S., C. Caloz, and T. Itoh, "Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 1, 161-173, 2005.
    doi:10.1109/TMTT.2004.839927

    11. Antoniades, M. A. and G. V. Eleftheriades, "Compact linear lead/lag metamaterial phase shifters for broadband applications," IEEE Antennas Wireless Propag. Lett., Vol. 2, 103-106, 2003.
    doi:10.1109/LAWP.2003.815280

    12. Islam, R., F. Elek, and G. V. Eleftheriades, "Coupled-line metamaterial coupler having co-directional phase but contradirectional power flow," Electronic Letters, Vol. 40, No. 5, 315-317, 2004.
    doi:10.1049/el:20040197

    13. Kim, H., A. B. Kozyrev, A. Karbassi, and D. W. van der Weide, "Linear tunable phase shifter using a left-handed transmission line," IEEE Microwave andWir eless Components Letters, Vol. 15, No. 5, 366-368, 2005.
    doi:10.1109/LMWC.2005.847715

    14. Islam, R. and G. V. Eleftheriades, "Phase-agile branch-line couplers using metamaterial lines," IEEE Microwave andWir eless Components Letters, Vol. 14, 340-342, 2004.
    doi:10.1109/LMWC.2004.829277

    15. Caloz, C., A. Sanada, and T. Itoh, "A novel composite right-/lefthanded coupled-line directional coupler with arbitrary coupling level and broad bandwidth," IEEE Trans. Microwave Theory and Techniques, Vol. 52, No. 3, 980-992, 2004.
    doi:10.1109/TMTT.2004.823579

    16. Antoniades, M. A. and G. V. Eleftheriades, "A broadband Wilkinson balun using microstrip metamaterial lines," IEEE Antennas Wireless Propag. Lett., Vol. 4, 209-212, 2005.
    doi:10.1109/LAWP.2005.851005

    17. Antoniades, M. A. and G. V. Eleftheriades, "A broadband series power divider using zero-degree metamaterial phase-shifting lines," IEEE Microwave andWir eless Components Letters, Vol. 15, No. 11, 808-810, 2005.
    doi:10.1109/LMWC.2005.859007

    18. Goussetis, G., A. P. Feresidis, S. Wang, Y. Guo, and J. C. Vardaxoglou, "Planar left-handed artificial metamaterials," J. Opt. A: Pure Appl. Opt., Vol. 7, No. 2, 44, 2005.
    doi:10.1088/1464-4258/7/2/006

    19. Guo, Y., G. Goussetis, A. P. Feresidis, and J. C. Vardaxoglou, "Efficient modeling of novel uniplanar left-handed metamaterials," IEEE Transactions on Microwave Theory andT echniques, Vol. 53, No. 4, 1462-1468, 2005.
    doi:10.1109/TMTT.2005.845204

    20. Hill, R. A. and B. A. Munk, "The effect of perturbating a frequency selective surface and its relation to the design of a dualband surface," IEEE Trans. Antennas Propagat., Vol. 44, No. 3, 368-374, 1996.
    doi:10.1109/8.486306

    21. Parker, E. A. and J. C. Vardaxoglou, Plane-wave illumination of concentric-ring frequency-selective surfaces, Proc. IEE- Microwaves, Vol. 132, No. 3, 176-180, 1985.

    22. Wu, T. K. and S. W. Lee, "Multiband frequency surface with multiring patch elements," IEEE Trans. Antennas Propagat., Vol. 42, No. 11, 1484-1490, 1994.
    doi:10.1109/8.362790

    23. High Frequency Structure Simulator (HFSS), ver. 9.0, Ansoft Corporation, 2003., 2003.

    24. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
    doi:10.2528/PIER04070701

    25. Yao, H.-Y., L.-W. Li, Q. Wu, and J. A. Kong, "Macroscopic performance analysis of metamaterials synthesized from microscopic 2-D isotropicc ross split-ring resonator array," Progress In Electromagnetics Research, Vol. 51, 197-219, 2005.
    doi:10.2528/PIER04020301

    26. Wongkasem, N., A. Akyurlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.
    doi:10.2528/PIER06071104