Vol. 66

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2006-12-17

Unified Spectral Technique Application for Study of Radiator Behavior Near Planar Layered Composites

By Marina Koledintseva, Vadim Bodrov, Irina Sourkova, Michael Sabirov, and Victor Sourkov
Progress In Electromagnetics Research, Vol. 66, 317-357, 2006
doi:10.2528/PIER06111701

Abstract

The Unified Spectral Technique (UST) is a rigorous analytical approach for calculating power fluxes of any type of source and losses in multilayered dielectric structures of canonical geometries. This method is a reasonable addition to the eigenfunctions technique. An important advantage of the method is that the power fluxes are represented in an explicit form via their spectra, avoiding cumbersome calculations via field components. In this paper, this approach is specified for a case of planar multilayered structures, including those made of composite materials. Results of computations for the simplest types of radiators (electric and magnetic dipoles) in proximity of parallel-plane composite layers, comprised of a dielectric base and conducting inclusions with concentrations below and above percolation threshold, are analyzed.

Citation

 (See works that cites this article)
Marina Koledintseva, Vadim Bodrov, Irina Sourkova, Michael Sabirov, and Victor Sourkov, "Unified Spectral Technique Application for Study of Radiator Behavior Near Planar Layered Composites," Progress In Electromagnetics Research, Vol. 66, 317-357, 2006.
doi:10.2528/PIER06111701
http://jpier.org/PIER/pier.php?paper=06111701

References


    1. Huang, J. Y., P. C. Ravva, M. Y. Koledintseva, R. E. DuBroff, J. L. Drewniak, B. Archambeault, and K. N. Rozanov, Design of a metafilm-composite dielectric shieldingstructure usinga genetic algorithm, Proc. Progress In Electromagnetic Research Symposium, 26-29, Cambridge, 2006.

    2. Koledintseva, M. Y., P. C. Ravva, R. E. DuBroff, J. L. Drewniak, K. N. Rozanov, and B. Archambeault, Engineering of composite media for shields at microwave frequencies, Proc. IEEE Symp. Electromag. Compat., Vol. 1, No. 8, 169-174, 2005.

    3. Paris, D. T., "Computer aided radome analysis," IEEE Trans. Ant. Propag., Vol. 18, 7-15, 1970.
    doi:10.1109/TAP.1970.1139614

    4. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Vol. 2, Vol. 2, Prentice-Hall, Englewood Cliffs, N.J., 1973.

    5. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, N.Y., 1990.

    6. King, R. W. P., "The electromagnetic field of a horizontal electric dipole in the presence of a three-layered region," J. Appl. Phys., Vol. 69, No. 12, 7987-7995, 1991.
    doi:10.1063/1.347494

    7. King, R. W. P., "The electromagnetic field of a horizontal electric dipole in the presence of a three-layered region: Supplement," J. Appl. Phys., Vol. 74, No. 8, 4845-4848, 1993.
    doi:10.1063/1.354313

    8. King, R. W. P., M. Owens, and T. T. Wu, Lateral Electromagnetic Waves: Theory and Applications to Communications, Geophysical Exploration, and Remote Sensing, Springer-Verlag, 1992.

    9. Zhang, H.-Q., W.-Y. Pan, K. Li, and K.-X. Shen, "Electromagnetic field for a horizontal electric dipole buried inside a dielectric layer coated high lossy half space," Progress In Electromagnetics Research, Vol. 50, 163-186, 2005.
    doi:10.2528/PIER04052301

    10. Li, K. and Y.-L. Lu, "Electromagnetic field from a horizontal electric dipole in the spherical electrically earth coated with N-layered dielectrics," Progress In Electromagnetics Research, Vol. 54, 221-244, 2005.
    doi:10.2528/PIER04121201

    11. Bodrov, V. V. and I. V. Sourkova, The effect of multilayered dielectric radomes with different shapes on the amplitude and phase characteristics of antennas with planar aperture, Proc. URSI Int. Symp. Electromagnetics Theory, No. 5, 391-393, 1995.

    12. Bodrov, V. V. and I. V. Sourkova, "Effect of a multilayered cylindrical dome on the pattern of an antenna array arranged arbitrarily with respect to the dome," J. Communications Technology and Electronics, Vol. 40, No. 7, 91-97, 1995.

    13. Bodrov, V. V., I. V. Sourkova, and V. I. Sourkov, "Effect of a multilayered spherical dome on the amplitude and phase characteristics of the system of radiators arranged arbitrarily with respect to the dome," J. Communications Technology and Electronics, Vol. 42, No. 2, 1997.

    14. Sabirov, M., I. Sourkova, V. Sourkov, V. Bodrov, and M. Koledintseva, Power characteristics of radiators in multilayered dielectric structures, Progress In Electromagnetics Research Symposium, Vol. S-04, 28-31, 2004.

    15. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, London, 1941.

    16. Pozar, D. M., Microwave Engineering, John Wiley, New York, NY, 1998.

    17. Derat, B. and J.-C. Bolomey, "Analytical lower and upper bounds of power absorption in near-field regions deduced from a modalbased equivalent junction model," Progress In Electromagnetics Research, Vol. 58, 21-49, 2006.
    doi:10.2528/PIER05062101

    18. Paul, C. R., Introduction to Electromagnetic Compatibility, John Wiley, New York, NY, 1992.

    19. Neelakanta, P. S., Handbook of Electromagnetic Materials, CRC Press, Boca Raton, FL, 1995.

    20. Kuester, E. F. and C. L. Holloway, "Comparison of approximations for effective parameters of artificial dielectrics," IEEE Trans. Microw. Theory Techn., Vol. 3, 1752-1755, 1990.
    doi:10.1109/22.60028

    21. Sheng, P., "Theory of dielectric function of granular composite media," Phys. Rev. Letters, Vol. 45, No. 1, 60-63, 1980.
    doi:10.1103/PhysRevLett.45.60

    22. Doyle, W. T. and I. S. Jacobs, "The influence of particle shape on dielectric enhancement in metal-insulator composites," J. Appl. Phys., Vol. 71, No. 8, 3926-3936, 1992.
    doi:10.1063/1.350862

    23. Diaz, R. E., W. M. Merrill, and N. G. Alexopoulos, "Analytical framework for the modelingof effective media," J. Appl. Phys., Vol. 84, No. 12, 8615-6826, 1998.
    doi:10.1063/1.369013

    24. Garnett, J. C. M., "Colors in metal glasses and metal films," Philos. Trans. R. Soc., Vol. 3, 385-420, 1904.

    25. Sihvola, A., "Effective permittivity of dielectric mixtures," IEEE Trans. Geosc. Remote Sens., Vol. 26, No. 4, 420-429, 1988.
    doi:10.1109/36.3045

    26. Sihvola, A., Electromagnetic Mixing Formulas and Applications, The IEE, London, UK, 1999.

    27. Sihvola, A., "Metamaterials and depolarization factors," Progress In Electromagnetics Research, Vol. 51, 65-82, 2005.
    doi:10.2528/PIER04021001

    28. Koledintseva, M. Y., R. E. DuBroff, and R. W. Schwartz, "A Maxwell Garnett model for dielectric mixtures containingconductingparticles at optical frequencies," Progress In Electromagnetics Research, Vol. 63, 223-242, 2006.
    doi:10.2528/PIER06052601

    29. Koledintseva, M. Y., J. Wu, J. Zhang, J. L. Drewniak, and K. N. Rozanov, Representation of permittivity for multi-phase dielectric mixtures in FDTD modeling, Proc. IEEE Symp. Electromag. Compat., Vol. 1, 9-13, 2004.

    30. Matitsine, S. M., et al., "Shift of resonance frequency of longconductingfib ers embedded in a composite," J. Appl. Phys., Vol. 94, No. 2, 1146-1154, 2003.
    doi:10.1063/1.1577395

    31. Lagarkov, A. N. and A. K. Sarychev, "Electromagnetic properties of composites containingelong ated conductinginclusions," Physical Review B, Vol. 53, No. 10, 6318-6336, 1996.
    doi:10.1103/PhysRevB.53.6318

    32. McLachlan, D. S., A. Priou, I. Chernie, E. Isaac, and E. Henry, "Modelingthe permittivity of composite materials with general effective medium equation," J. Electromagn. Waves and Applications, Vol. 6, No. 6, 1099-1131, 1992.

    33. Ghosh, K. and R. Fuchs, "Spectral theory for two-component porous media," Phys. Review B, Vol. 38, 5222-5236, 1988.
    doi:10.1103/PhysRevB.38.5222

    34. Youngs, I. J., "Exploring the universal nature of electrical percolation exponents by genetic algorithm fitting with general effective medium theory," J. Phys, Vol. 35, 3127-3137, 2002.