Vol. 66

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2006-12-01

Modeling of Dielectric Mixtures Containing Conducting Inclusions with Statistically Distributed Aspect Ratio

By Marina Koledintseva, Sandeep Chandra, Richard DuBroff, and Robert Schwartz
Progress In Electromagnetics Research, Vol. 66, 213-228, 2006
doi:10.2528/PIER06110903

Abstract

An analytical model of composites made of a dielectric base and randomly oriented metal inclusions in the form of nanorods is presented. This model is based on the generalized Maxwell Garnett (MG) mixing rule. In this model, the nanorod particles are modeled as prolate spheroids with a statistically normal distribution of their aspect ratios. It is shown that parameters of the distribution laws affect the frequency characteristics of the composites both at microwave and optical frequencies. The results of computations are represented.

Citation

 (See works that cites this article)
Marina Koledintseva, Sandeep Chandra, Richard DuBroff, and Robert Schwartz, "Modeling of Dielectric Mixtures Containing Conducting Inclusions with Statistically Distributed Aspect Ratio," Progress In Electromagnetics Research, Vol. 66, 213-228, 2006.
doi:10.2528/PIER06110903
http://jpier.org/PIER/pier.php?paper=06110903

References


    1. Maxwell Garnett, J. C., "Colours in metal glasses and metal films," Philos. Trans. R. Soc. London, Vol. 3, 385-420, 1904.

    2. Sihvola, A., "Metamaterials and depolarization factors," Progress In Electromagnetics Research, Vol. 51, 65-82, 2005.
    doi:10.2528/PIER04021001

    3. Koledintseva, M. Y., P. C. Ravva, R. E. DuBroff, J. L. Drewniak, K. N. Rozanov, and B. Archambeault, Engineering of composite media for shields at microwave frequencies, Proc. IEEE EMC Symposium, Vol. 1, No. 8, 169-174, 2005.

    4. Koledintseva, M. Y., J. Wu, J. Zhang, J. L. Drewniak, and K. N. Rozanov, Representation of permittivity for multi-phase dielectric mixtures in FDTD modeling, Proc. IEEE Symp. Electromag. Compat., Vol. 1, 9-13, 2004.

    5. Koledintseva, M. Y., R. E. DuBroff, and R. W. Schwartz, "A Maxwell Garnett model for dielectric mixtures containing conducting particles at optical frequencies," Progress In Electromagnetics Research, Vol. 63, 223-242, 2006.
    doi:10.2528/PIER06052601

    6. Landau, L.D., E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics ofContinuous Media, 2nd ed., Pergamon, Oxford, New York, 1984.

    7. Sihvola, A., Electromagnetic Mixing Formulas and Applications, IEE, London, UK, 1999.

    8. Lagarkov, A. N. and A. K. Sarychev, "Electromagnetic properties of composites containing elongated conducting inclusions," Phys. Review B., Vol. 53, No. 9, 6318-6336, 1996.
    doi:10.1103/PhysRevB.53.6318

    9. Maslovski, S., P. Ikonen, I. Kolmakov, S. A. Tretyakov, and M. Kaunisto, "Artificial magnetic materials based on the new magnetic particle: metasolenoid," Progress In Electromagnetics Research, Vol. 54, 61-81, 2005.
    doi:10.2528/PIER04101101

    10. Korn, G. A. and T. M. Korn, Mathematical Handbook for Scientists and Engineers, 2nd ed., Chapter 18, McGraw-Hill, 1968.

    11. Koledintseva, M. Y., J. L. Drewniak, D. J. Pommerenke, K. N. Rozanov, G. Antonini, and A. Orlandi, "Wideband Lorentzian media in the FDTD algorithm," IEEE Trans. on Electromag. Compat., Vol. 47, No. 2, 392-398, 2005.
    doi:10.1109/TEMC.2005.847406