Vol. 68
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-09-17
Effect of Wildfire-Induced Thermal Bubble on Radio Communication
By
, Vol. 68, 197-228, 2007
Abstract
Horizontal roll vortex pairs are dynamical structures that transfer energy and emissions from wildfires into the atmosphere. The vortices form at the edges of an intense line wildfire and emulate two cylinders, which form two curvatures of a biconcave thermal lens. Wildfire plume provides a dielectric material for the dielectric lens, whose permittivity is influenced by the nature, quantity of constituents (e.g., potassium and graphitic carbon) and variation of temperature with height in the plume. The environment created by the plume is radio sub-refractive with an effect of spreading radio wave beams. A numerical experiment was carried out to quantify loss of Ultra High Frequency (UHF) radio signal intensity when high intensity wildfire- induced horizontal roll vortices intercept UHF propagation path. In the numerical experiment, a collimated radio wave beam was caused to propagate along fuel-fire interface of a very high intensity wildfire in which up to two roll vortex pairs are formed. Maximum temperature of the simulated wildfire was 1200 K. Flame potassium content was varied from 0.5-3.0%. At 3.0% potassium content, a vortex pair imposed a maximum radio ray divergence of 2.1 arcmins while two vortex
Citation
Kgakgamatso Mphale, Mal Heron, and Tej Verma, "Effect of Wildfire-Induced Thermal Bubble on Radio Communication," , Vol. 68, 197-228, 2007.
doi:10.2528/PIER06072202
References

1. Akhtar, K., E. J. Scharer, S. M. Tysk, and E. Kho, "Plasma interferometry at high pressures," Review of Scientific Instruments, Vol. 74, No. 2, 996-1001, 2003.
doi:10.1063/1.1533104

2. Bean, B. R. and J. E. Dutton, "Radio meteorology," NBS Monogr., Vol. 92, 1966.

3. Butler, C. J. and A. N. Hayhurst, "Kineticsofgas-phaseionizationofanalkalimetal,A,bytheelectronandprotontransferreactions:A+H3O+→A+H2O+H;AOH+AOH2+H3Oinfuel-richflamesat1800-2250K," J. Chem. Soc. Faraday Trans., Vol. 98, 2729-2734, 1998.
doi:10.1039/a804099k

4. Burrows, W. G., "Distortion of a narrow radio beam in a convective medium," AGARD Characteristics of the Lower Atmosphere Influencing Radio Wave Propagation, Vol. 21, 15-32, 1984.

5. Butler, B. W., J. Cohen, D. J. Latham, R. D. Schuette, P. Sopko, K. S. Shannon, D. Shannon, and L. S. Bradshaw, "Measurements of radiant emissive power and temperatures," Crown Fires. Can. J. For. Res., Vol. 34, No. 8, 1577-1587, 2004.
doi:10.1139/x04-060

6. Carter, E. and B. Milton, "Internal combustion engine perfor- mance in the fire ground," International Journal of Wild land Fire, Vol. 4, No. 2, 83-91, 1994.
doi:10.1071/WF9940083

7. Catchpole, W. R.E. A. Catchpole, A. G. Tate, B. W. Butler, and R. C. Rothermel, "A model for the steady spread of fire through a homogeneous fuel bed," Proceedings of 4th International Conference on Forest Fire Research: 2002 Wild land Fire Safety, 18-23, 2002.

8. Church, C. R., J. T. Snow, and J. Dessens, "Intense atmospheric vortices associated with 1000 MW fire," Bul letin of the American Meteorological Society, Vol. 61, 682-694, 1980.
doi:10.1175/1520-0477(1980)061<0682:IAVAWA>2.0.CO;2

9. Clark, T. L., M. Griffiths, M. J. Reeder, and D. Latham, "Numerical simulations of grassland fires in the northern territory, Australia, A new subgrid-scale fire parameterization," Journal of Geophysical Research, 14-1, 2003.

10. Clark, T. L., M. J. Reeder, M. Griffiths, D. Packham, and N. Krusel, "Infrared observations and numerical modelling of grassfires in northern territory, Australia," Meteorology and Atmospheric Physics, Vol. 88, 193-201, 2005.
doi:10.1007/s00703-004-0076-9

11. Cruz, M. G., B. W. Butler, M. E. Alexander, J. M. Forthofer, and R. H. Wakimoto, "Predicting the ignition of crown fuels above a spreading surface fire Part I: Model idealization," International Journal of Wild land Fire, Vol. 15, 47-60, 2006.
doi:10.1071/WF04061

12. Frankenberg, E., D. Mckee, and D. Thomas, "Health consequences of forest fires in Indonesia," Demography, Vol. 42, No. 1, 109-129, 2002.
doi:10.1353/dem.2005.0004

13. Frost, L. S., "Conductivity of seeded atmospheric pressure plasmas," Journal of Applied Physics, Vol. 32, No. 10, 2029-2036, 1961.
doi:10.1063/1.1728283

14. Gill, A. M., P. H. R. Moore, and R. J. Williams, "Fire — weather in wet-dry tropics of the world heritage Kakadu National Park, Australia," Australian Journal of Ecology, Vol. 21, 302-308, 1996.
doi:10.1111/j.1442-9993.1996.tb00612.x

15. Gossard, E. E., "Refractive index variance and its height distribution in different air masses," Radio Science, Vol. 12, 89-105, 1977.

16. Haines, D. A., "Horizontal roll vortices and crown fires," Journal of Applied Meteorology, Vol. 21, 751-763, 1982.
doi:10.1175/1520-0450(1982)021<0751:HRVACF>2.0.CO;2

17. Haines, D. A. and M. C. Smith, "Three types of horizontal vortices observed in wildland mass and crown fires," Journal of Applied Meteorology, Vol. 26, 1624-1637, 1987.
doi:10.1175/1520-0450(1987)026<1624:TTOHVO>2.0.CO;2

18. Heilman, W. E., "Atmospheric simulations of extreme surface heating episodes on simple hills," International Journal of Wild land Fire, Vol. 2, No. 3, 99-114, 1992.
doi:10.1071/WF9920099

19. Heilman, W. E. and J. D. Fast, "Simulations of horizontal roll vortex development above lines of extreme surface heating," International Journal of Wild land Fire, Vol. 21, 751-763, 1992.

20. Jenkins, A., "Investigating the haines index using parcel model theory," International Journal of Wild land Fire, Vol. 13, 297-309, 2004.
doi:10.1071/WF03055

21. Koalaga, Z., "Determination of equilibrium composition of CxHyOzNt plasmas out of thermodynamic equilibrium," Eur. Phys. Journal D., Vol. 17, 235-247, 2001.
doi:10.1007/s100530170027

22. Koppman, R., K. von Czapicwski, and J. S. Reid, "A review of biomass emissions, Part I : Gaseous emissions of carbon monoxide, methane, volatile organic compounds and nitrogen containing compounds," Atoms. Chem. Phys. Discuss, Vol. 5, 10455-10516, 2005.

23. Latham, D., "Space charge generated by wind tunnel fires," Atmospheric Research, Vol. 51, 267-278, 1999.
doi:10.1016/S0169-8095(99)00012-5

24. Marcelli, T., P. A. Santoni, A. Simeoni, E. Leoni, and B. Porterie, "Fire spread across pine needle fuel beds: characterization of temperature and velocity distribution within the fire plume," International Journal of Wild land Fire, Vol. 13, 37-48, 2004.
doi:10.1071/WF02065

25. Mecer, G. N. and R. O. Weber, "Plumes above line fires in a cross wind," Int. Journal of Wild land Fire, Vol. 4, No. 4, 201-207, 1994.
doi:10.1071/WF9940201

26. Nikolaenko, A. and G. Ahlers, "Nusselt number measurements for turbulent rayleigh-bernard convection," Physical Review Letters, Vol. 9, No. 8, 1-4, 2003.

27. Okuno, T., N. Sonoyama, J. Hayashi, C. Li, C. Sathe, and T. Chiba, "Primary release of Alkali and Alkaline earth metallic species during pyrolysis of pulverized biomass energy and fuels," Vol. 19, Vol. '' 19, 2164-2171, 2005.

28. Palmer, T. Y., "Visible, infrared (IR) and microwave propagation in and near large fires," SPIE Atmospheric Effects on System Performance, Vol. 35, 1981.

29. Porterie, B., J. C. Loraud, D. Morvan, and M. Larini, "A numerical study of buoyant plumes in cross-flow conditions," International Journal of Wild land Fire, Vol. 10, 1999.

30. Rado jevic, M., "Chemistry of forest fires and regional haze with emphasis on Southeast Asia," Pure and Applied Geophysics, Vol. 12, 157-187, 2003.
doi:10.1007/s00024-003-8771-x

31. Raison, R. J., P. K. Khaina, and P. Woods, "Mechanisms of element transfer to the atmosphere during vegetation burning," Canad. Journal of Forest Res., Vol. 15, 132-140, 1985.

32. Sanchez, O., D. J. Raymond, L. Libersky, and A. G. Petschek, "The development of thermals from rest," Journal of the Atmospheric Sciences, Vol. 46, 2280-2292, 1989.
doi:10.1175/1520-0469(1989)046<2280:TDOTFR>2.0.CO;2

33. Stronach, N. R. H. and S. J. Mc Naughton, "Grassland fire dynamics in serengeti ecosystem and potential method of retrospectively estimating fire energy," Journal of Applied Ecology, Vol. 26, No. 3, 1025-1033, 1989.
doi:10.2307/2403709

34. Tapper, N. J., G. Garden, J. Gill, and J. Fernon, "The climatology and meteorology of high fire danger in northern territory," Rangeland Journal, Vol. 15, No. 2, 339-351, 1993.
doi:10.1071/RJ9930339

35. Weber, R. O., A. M. Gill, P. R. A. Lyons, and G. N. Mercer, "Time dependence of temperature above wildland fires," CALM Science, Vol. 4, 17-22, 1995.

36. Westberg, H. M., M. Bystrom, and B. Lecker, "Distribution of potassium, chlorine and sulphur between solid and vapour phases during combustion of wood and coal," Energy and Fuels, Vol. 17, 18-28, 2003.
doi:10.1021/ef020060l

37. Williams, D. W., J. S. Adams, J. J. Batten, G. F. Whitty, and G. T. Richardson, "Operation euroka: an Australian mass fire experiment," Report 386, 1970.

38. Williams, R. P., R. A. Congdon, A. C. Grice, and P. J. Clarke, "Effect of fire regime on plant abundance in tropical eucalypt savanna of north-eastern Australia," Austral Ecology, Vol. 28, 327-338, 2003.
doi:10.1046/j.1442-9993.2003.01292.x

39. Ventura, J. M. P. and F. M. C. Rego, "Modelling the shape of temperature-time curves," 13th Fire and Forest Meteorology Conference, 1996.

40. Viegas, D. X., "Fire behaviour and fire line intensity," Ann. Medit. Burns Club, Vol. 6, No. 3, 179-186, 1993.

41. Viegas, D. X., "Forest f propagation," Phil. Trans. R. Soc. Lond. A., Vol. 356, 2907-2928, 1998.
doi:10.1098/rsta.1998.0303

42. Vodacek, A., R. L. Kremens, S. C. Fordham, S. C. VanGorden, D. Luisi, J. R. Schott, and D. J. Latham, "Remote optical detection of biomass burning using potassium emission signature," Int. Journal of Remote Sensing, Vol. 23, 2721-2726, 2002.
doi:10.1080/01431160110109633

43. Yamasoe, M. A., P. Artaxo, A. H. Miguel, and A. G. Allen, "Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: wate-soluble species and trace elements," Atmospheric Environment, Vol. 34, 1641-1653, 2000.
doi:10.1016/S1352-2310(99)00329-5

44. Potter, B. E., "A dynamics based view of Atmospheric-fire interactions," Int. Journal of Wild land Fire, Vol. 11, 247-255, 2002.
doi:10.1071/WF02008

45. Oliveira, L. A.D. X. Veigas, V. Vareli, and A. M. Raimudo, "On the soil thermal effect under the surface fire conditions," Proceedings of 2nd Int. Conf. Forest Fire Research, Vol. III, 833-847, 2002.

46. Haines, D. and L. J. Lyon, "Horizontal roll vortices in complex terrain," Fire Management Today, Vol. 51. No. 2, No. Vol. 51. 2, 15-17, 1990.

47. Kulemin, G. P. and V. B. Razskazovsky, "Radar reflections from explosions and gas wake of operting engine," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 4, 731-739, 1997.
doi:10.1109/8.564100

48. Kuei-Chaio, K., "Theory of Raman intensities of diatomic molecule," Chinese Journal of Physics, Vol. 8, No. 2, 58-63, 1970.