Vol. 62
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-07-02
Analysis of the Mixed Coupling in Bilateral Microwave Circuits Including Anisotropy for Mics and Mmics Applications
By
Progress In Electromagnetics Research, Vol. 62, 281-315, 2006
Abstract
Higher integration and smaller layout size, two major trends in today's industry, lead to more prominent electromagnetic coupling with direct applications in the RF/microwave area such as directional couplers, filters, multiplexers, shifters, delay lines, etc. In the present work, an efficient hybrid-mode method is presented for a rigorous characterization of the coupling in multilayer bilateral microwave circuits including anisotropy effects. Various types of planar configurations were considered including microstrip, finline and coplanar structures, but the proposed approach can easily be extended to any form of coupled lines. To fully characterize bilateral multilayer circuits in millimetre wave region with an arbitrary number of conductors, closed forms of dyadic Green's functions were determined in the spectral domain, with use of the Galerkin technique. The computed results show good agreement with data available in the literature. Furthermore, two original configurations based on three line bilateral couplers were computed and validated using neural network models.
Citation
Mohamed Lamine Tounsi, R. Touhami, A. Khodja, and Mustapha Yagoub, "Analysis of the Mixed Coupling in Bilateral Microwave Circuits Including Anisotropy for Mics and Mmics Applications," Progress In Electromagnetics Research, Vol. 62, 281-315, 2006.
doi:10.2528/PIER06020601
References

1. Grzegorczyk, T. M., M. Nikku, X. Chen, B.-I.Wu, and J. A. Kong, "Refraction laws for anisotropic media and their application to left-handed metamaterials," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 2005.
doi:10.1109/TMTT.2005.845206

2. Grzegorczyk, T. M., X. Chen, J. Pacheco Jr., J. Chen, B.-I. Wu, and J. A. Kong, "Reflection coefficients and Goos-Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials," Progress In Electromagnetics Research, Vol. PIER 51, 83-113, 2005.
doi:10.2528/PIER04040901

3. Zhang, Y., X. Wei, and E. Li, "Electromagnetic scattering from three-dimensional bianisotropic objects using hybrid finite element-boundary integral method," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 2004.
doi:10.1163/1569393042954857

4. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, J. Lu, T. M. Grzegorczyk, J. A. Kong, P. Kao, P. A. Theophelakes, and M. J. Hogan, "Anisotropic metamaterials as antenna substrate to enhance directivity," Microwave Opt. Technol. Lett., Vol. 48, No. 4, 680-683, 2006.
doi:10.1002/mop.21441

5. Casula, G. A., G. Mazzarella, and G. Montisci, "Effective analysis of a microstrip slot coupler," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 9, 2004.
doi:10.1163/1569393042955333

6. Itoh, T., "Spectral domain approach for dispersion characteristics of generalized printed transmission lines," IEEE Trans. on Microwave Theory and Tech., Vol. 28, No. 7, 733-736, 1980.
doi:10.1109/TMTT.1980.1130158

7. Radhakrishnan, K. and W. C. Chew, "Full-wave analysis of multiconductor transmission lines on anisotropic inhomogeneous substrates," IEEE Trans. on Microwave Theory and Tech., Vol. 47, No. 9, 1764-1770, 1999.
doi:10.1109/22.788510

8. Mirshekar-Syahkal and D., J. B. Davies, "Accurate analysis of coupled strip-finline structure for phase constant, characteristic impedance, dielectric and conductor losses," IEEE Trans. on Microwave Theory and Tech., Vol. MTT-30, No. 6, 906-910, 1982.
doi:10.1109/TMTT.1982.1131167

9. Itoh, T. and A. S. Hebert, "A generalized spectral domain analysis for coupled suspended microstriplines with tuning septums," IEEE Trans. on Microwave Theory and Tech., Vol. MTT-26, No. 10, 820-826, 1978.
doi:10.1109/TMTT.1978.1129493

10. Kitazawa, T. and R. Mittra, "Quasi-static characteristics of asymmetrical and coupler coplanar-type transmission lines'' Ibid," Ibid, Vol. 33, 771-778, 1985.

11. Arai, S., et al. "A 900MHz degree hybrid for QPSK modulator," IEEE MTT-S Int. Microwave Symp. Dig., 679-682, 1991.

12. Tanaka, H., et al. "2-GHz one octave-band 90 degree hybrid coupler using coupled meander line optimized by 3-D FEM," IEEE MTT-S Int. Microwave Symp. Dig., 906-906, 1994.

13. Tanaka, H., et al. "Miniaturized 90-degree hybrid coupler using high dielectric substrate for QPSK modulator," IEEE MTT-S Int. Microwave Symp. Dig., 793-796, 1996.

14. Janiczak, B. J., "Multiconductor planar transmission-line structures for high directivity coupler applications," IEEE MTT-S Int. Microwave Symp. Dig., 215-218, 1985.

15. Horno, M. and F. Medina, "Multilayer planar structures for high directivity directional coupler design," Ibid, 283-286, 1986.

16. Paolino, D. D., "MIC overlay coupler design spectral domain techniques," IEEE Trans. on Microwave Theory and Tech., Vol. 26, 646-649, 1978.
doi:10.1109/TMTT.1978.1129456

17. Beyer, A. and K. Solbach, "A new fin-line ferrite isolator for integrated millimeter-wave circuit," Ibid, Vol. 29, 1344-1348, 1981.

18. Davis, L. E. and D. B. Sillars, "Millimetric coupled-slot finline components," Ibid, Vol. 34, 804-808, 1986.

19. Mu, T., H. Ogawa, and T. Itoh, "Characteristics of multiconductor asymmetric, slow-wave microstrip transmission lines," Ibid, 1471-1477, 1986.

20. Fukuoaka, Y., Q. Zhang, D. P. Neikirk, and T. Itoh, "Analysis of multilayer interconnection lines for high-speed digital integrated circuit," Ibid, Vol. 33, 527-532, 1985.

21. Itoh, T., "Spectral domain approach for calculating the dispersion characteristics microstrip lines," IEEE Trans. on Microwave Theory and Tech., Vol. 21, 496-499, 1973.
doi:10.1109/TMTT.1973.1128044

22. Tounsi, M. L., R. Touhami, and M. C. E. Yagoub, "Fullwave analysis of bilateral microwave structures on multilayered uniaxially anisotropic substrate," WSEAS Transactions on Electronics, Vol. 1, No. 4, 621-626, 2004.

23. Ho, T. Q. and B. Becker, "Analysis of bilateral fin-lines on anisotropic substrates," IEEE Trans. on Microwave Theory and Tech., Vol. 40, No. 2, 405-409, 1992.
doi:10.1109/22.120116

24. Ramakrishna, P. V. and D. Chadha, "Coupled mode analysis of finlines on anisotropic substrates," Department of Electrical Engineering Indian Institute of Technology, 1399-1400, 1989.

25. Sharma, A. K. and W. J. R. Hoefer, "Propagation in coupled unilateral and bilateral finlines," IEEE Trans. on Microwave Theory and Tech., Vol. MTT-31, No. 6, 498-502, 1983.
doi:10.1109/TMTT.1983.1131532

26. Kuo, J. T. and E. Shih, "Wideband bandpass filter design with three-line microstrip structures," IEE Proc. Microw. Antennas Propag., Vol. 149, No. 5/6, 243-247, 2002.

27. Zhang, Q. J. and K. C. Gupta, Neural Networks for RF and Microwave Design, Artech House, Norwood, MA, 2000.

28. Patnaik, A., K. Mishra, G. K. Patra, and S. K. Dash, "An artificial neural network model for effective dielectric constant of microstrip line," IEEE Trans. Antennas Propagat., Vol. 45, No. 11, 1997.
doi:10.1109/8.650084

29. Zhang, Q. J., F. Wang, and M. S. Nakhla, "Optimization of high-speed VLSI interconnects: A review," Int. J. Microwave Millimeter-Wave CAE, Vol. 7, 83-107, 1997.
doi:10.1002/(SICI)1522-6301(199701)7:1<83::AID-MMCE6>3.0.CO;2-K

30. Horng, T., C. Wang, and N. G. Alexopoulos, "Microstrip circuit design using neural networks," IEEE MTT-S Int. Microwave Symp. Dig., No. 6, 413-416, 1993.
doi:10.1109/MWSYM.1993.276791

31. Cho, C. and K. C. Gupta, "EM-ANN modeling of overlapping open-ends in multilayer microstrip lines for design of bandpass filters," IEEE APS Int. Symp. Dig., No. 8, 2592-2595, 1999.

32. Zaabab, A. H., Q. J. Zhang, and M. S. Nakhla, "A neural network modeling approach to circuit optimization and statistical design," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 6, 1349-1358, 1995.
doi:10.1109/22.390193

33. Biernacki, R., J. W. Bandler, J. Song, and Q. J. Zhang, "Efficient quadratic approximation for statistical design," IEEE Trans. Circuits Syst., Vol. 36, No. 11, 1449-1454, 1989.
doi:10.1109/31.41293

34. Meijer, P., "Fast and smooth highly nonlinear multidimensional table models for device modeling," IEEE Trans. Circuits Syst., Vol. 37, No. 3, 335-346, 1990.
doi:10.1109/31.52727

35. Zhang, Q. J., "NeuroModeler," Department of Electronics.