Vol. 60

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Optimization Approach to the Retrieval of the Constitutive Parameters of Slab of General Bianisotropic Medium

By Xudong Chen, Tomasz M. Grzegorczyk, and Jin Kong
Progress In Electromagnetics Research, Vol. 60, 1-18, 2006


The reconstruction of the frequency-dispersive constitutive parameters of general bianisotropic media is achieved by an optimization approach. The constitutive parameters are optimized in order to match the measured reflection and transmission data for plane wave incidence onto bianisotropic slabs. Two optimization methods, in our case the differential evolution (DE) algorithm and the Nelder-Mead simplex method, are used for the reconstruction at low frequencies. The Nelder-Mead simplex method is then used to obtain the solutions at higher frequencies, where the initial guess is obtained by the linear extrapolation of the solutions at previous frequencies. The proposed reconstruction method is tested with both noiseless and noisy data, and is proven feasible and robust.


 (See works that cites this article)
Xudong Chen, Tomasz M. Grzegorczyk, and Jin Kong, "Optimization Approach to the Retrieval of the Constitutive Parameters of Slab of General Bianisotropic Medium," Progress In Electromagnetics Research, Vol. 60, 1-18, 2006.


    1. Smith, D. R. and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett., Vol. 90, 077405, 2003.

    2. Grzegorczyk, T. M., M. Nikku, X. Chen, B.-I.Wu, and J. A. Kong, "Refraction laws for anisotropic media and their application to left-handed metamaterials," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1443-1450, 2005.

    3. Grzegorczyk, T. M., X. Chen, J. Pacheco, J. Chen, B.-I. Wu, and J. A. Kong, "Reflection coefficients and Goos-Hanchen shift in anisotropic and bianisotropic left-handed metamaterials," Progress In Electromagn. Ressearch, Vol. 51, 83-113, 2005.

    4. Kong, J. A., Electromagnetic Wave Theory, EMW, Cambridge, MA, USA, 2000.

    5. Kong, J. A., "Theorems of bianisotropic media," Proc. IEEE, Vol. 60, 1036-1046, 1972.

    6. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.

    7. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterial," Phys. Rev. E, Vol. 70, 016608, 2004.

    8. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.

    9. Chen, X., B. Wu, J. A. Kong, and T. M. Grzegorczyk, "Retrieval of the effective constitutive parameters of bianisotropic metamaterials," Phys. Rev. E, Vol. 71, 046610, 2005.

    10. Borzdov, G. N., "Lorentz-covariant surface impedance and characteristic matrix methods with applications to measurements of material parameters of linear media," Opt. Commun., Vol. 94, 159-173, 1992.

    11. Borzdov, G. N., "Novel free-space techniques to characterize complex mediums," Electromagnetic Fields in Unconventional Materials and Structures, 83-124, 2000.

    12. Rikte, S., G. Kristensson, and M. Andersson, "Propagation in bianisotropic media — reflection and transmission," IEE Proc. - Microw. Antennas Propag., Vol. 148, 29-36, 2001.

    13. Storn, R. and K. Price, "Differential evolution — a simple and efficient heuristic for global optimization over continuous spaces," J. Global Optim., Vol. 11, 341-359, 1997.

    14. Nelder, J. A. and R. Mead, "A simplex method for function minimization," Comput. J., Vol. 7, 308-313, 1965.

    15. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications, Wiley- Interscience, 2000.

    16. Dmitriev, V., "Constitutive tensors of omega- and chiroferrites," Microwave Opt. Technol. Lett., Vol. 29, 201-205, 2001.

    17. Chen, X., Inverse Problems in Electromagnetics, Ph.D. thesis, Massachusetts Institute of Technology, 2005.