Vol. 51
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-12-10
Analysis of the Left-Handed Metamaterials Using Multi-Domain Pseudospectral Time-Domain Algorithm
By
, Vol. 51, 153-165, 2005
Abstract
The increasing interest in electromagnetic effects in double-negative (DNG) materials requires a formulation capable of a full analysis of wave propagation in such materials. We develop a novel technique for discretization of the Drude medium model and adopt multi-domain pseudospectral time-domain (PSTD) algorithm and well-posed PML formulation to analysis the plane wave scattering properties of a single circular cylinder and a periodic array of the circular cylinders fabricated from the Drude medium. The simulation results show accuracy of the proposed constitutive equation-discretization scheme.
Citation
Yan Shi, and Chang-Hong Liang, "Analysis of the Left-Handed Metamaterials Using Multi-Domain Pseudospectral Time-Domain Algorithm," , Vol. 51, 153-165, 2005.
doi:10.2528/PIER04092301
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-515, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. P., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter., Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007

3. Pendry, J. P., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. MTT-47, 2075-2084, 1999.
doi:10.1109/22.798002

4. Smith, D. R. and N. Kroll, "Negative refractive index in left-handed materials," Phys. Rev. Lett., Vol. 85, 2933-2936, 2000.
doi:10.1103/PhysRevLett.85.2933

5. Smith, D. R., D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, "Loop-wire medium for investigating plasmons at microwave frequencies," Appl. Phys. Lett., Vol. 75, 1425-1427, 1999.
doi:10.1063/1.124714

6. Tretyakov, S. A., I. S. Nefedov, C. R. Simovski, and S. I. Maslovski, "Advances in electromagnetics of complex media and metamaterials," NATO-ARW Proceedings, 2002.

7. Karkkainen, M. K. and S. I. Maslovski, "Wave propagation, refraction, and focusing phenomena in Lorentzian doublenegative materials: a theoretical and numerical study," Microwave Opt. Technol. Lett., Vol. 37, 4-7, 2003.
doi:10.1002/mop.10807

8. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E., Vol. 64, 2001.
doi:10.1103/PhysRevE.64.056625

9. Correia, D. and J. M. Jin, "3D-FDTD-PML analysis of left-handed metamaterials," Microwave Opt. Technol. Lett., Vol. 40, 201-205, 2004.
doi:10.1002/mop.11328

10. Liu, Q. H., "The PSTD algorithm: A time-domain method requiring only two cells per wavelength," Microwave Opt. Technol. Lett., Vol. 15, 158-165, 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3

11. Tian, B. and Q. H. Liu, "Nonuniform fast cosine transform and chebyshev PSTD algorithm," Progress in Electromagnetics Research, Vol. 28, 259-279, 2000.

12. Yang, B. and J. S. Hesthaven, "Multidomain pseudospectral computation of Maxwells equations in 3-D general curvilinear coordinates," Appl. Numer. Math., Vol. 33, 281-289, 2000.
doi:10.1016/S0168-9274(99)00094-X

13. Fan, G.-X., Q. H. Liu, and J. S. Hesthaven, "Multidomain pseudospectral time-domain method for simulation of scattering from objects buried in lossy media," IEEE Trans. Geosci. Remote Sens., Vol. GRS-40, No. 6, 1366-1373, 2002.
doi:10.1109/TGRS.2002.800272

14. Zhao, G. and Q. H. Liu, "The 3-D multidomain pseudospectral time-domain algorithm for inhomogeneous conductive media," IEEE Trans. Antennas Propagat., Vol. AP-52, No. 3, 742-749, 2004.
doi:10.1109/TAP.2004.825187

15. Fan, G. X. and Q. H. Liu, "A well-posed PML absorbing boundary condition for lossy media," IEEE Antennas Propagation Soc. Int. Symp., Vol. 3, 2-5, 2001.

16. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell's equation with stretched coordinates," Microwave Opt. Technol. Lett., Vol. 7, 599-604, 1994.

17. Abarbanel, S. and D. Gottlieb, "A mathematical analysis of the PML method," J. Comput. Phys., Vol. 134, 357-363, 1997.
doi:10.1006/jcph.1997.5717

18. Carpenter, M. H. and C. A. Kennedy, "Fourth order 2N-storage Runge-Kutta scheme," NASA, 1994.

19. Hua, Y. and T. K. Sarkar, "Generalized pencil-of-function method for extracting poles of an EM system from its transient response," IEEE Trans. Antennas Propagat., Vol. AP-37, No. 2, 229-234, 1989.
doi:10.1109/8.18710

20. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2003.