Vol. 50

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2004-10-12

An Efficient Analysis of Large-Scale Periodic Microstrip Antenna Arrays Using the Characteristic Basis Function Method

By J. Wan, Juan Lei, and Chang-Hong Liang
Progress In Electromagnetics Research, Vol. 50, 61-81, 2005
doi:10.2528/PIER04050901

Abstract

This paper presents a novel approach for the efficient solution of large-scale periodic microstrip antenna arrays using the newly introduced characteristic basis functions (CBFs) in conjunction with the method of moments (MoM) based on the conventional RWG basis functions. The CBFs are special types of high-level basis functions by incorporating the physics of the problem, defined over domains that encompass a relatively large number of conventional subdomain basis functions. The advantages of applying the CBF method (CBFM) are illustrated by several representative examples, and the computation time as well as the memory requirements are compared to those of conventional direct computation. It is demonstrated that the use of CBFs can result in significant savings in computation time and memory requirements, with little or no compromise in the accuracy of the solution.

Citation

 (See works that cites this article)
J. Wan, Juan Lei, and Chang-Hong Liang, "An Efficient Analysis of Large-Scale Periodic Microstrip Antenna Arrays Using the Characteristic Basis Function Method," Progress In Electromagnetics Research, Vol. 50, 61-81, 2005.
doi:10.2528/PIER04050901
http://jpier.org/PIER/pier.php?paper=0405091

References


    1. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 10, 1225-1251, 1996.
    doi:10.1029/96RS02504

    2. Rokhlin, V., "Rapid solution of integral equations of scattering in two dimensions," J. Comput. Phys., Vol. 86, No. 2, 414-439, 1990.
    doi:10.1016/0021-9991(90)90107-C

    3. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propagat. Mag., Vol. 35, No. 3, 7-12, 1993.
    doi:10.1109/74.250128

    4. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1488-1493, 1997.
    doi:10.1109/8.633855

    5. Canning, F. X., "The impedance matrix localization (IML) method for moment-method calculations," IEEE Antennas Propagat. Mag., Vol. 32, No. 10, 18-30, 1990.
    doi:10.1109/74.80583

    6. Sarkar, T. K., E. Arvas, and S. M. Rao, "Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies," IEEE Trans. Antennas Propagat., Vol. 34, No. 5, 635-640, 1986.
    doi:10.1109/TAP.1986.1143871

    7. Ling, F., J.-M. Song, and J.-M. Jin, "Multilevel fast multipole algorithm for analysis of large-scale microstrip structures," IEEE Microwave Guided Wave Lett., Vol. 9, No. 12, 508-510, 1999.
    doi:10.1109/75.819414

    8. Chow, Y. L., J. J. Yang, D. G. Fang, and G. E. Howard, "A closed-form spatial Green's function for the thick microstrip substrate.'' IEEE Trans. Microwave Theory Tech.," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 3, 588-592, 1991.
    doi:10.1109/22.75309

    9. Howard, G. E. and Y. L. Chow, "Diakoptic theory for the microstrip structures," IEEE AP-S Int. Symp. Dig., No. 5, 1079-1082, 1990.

    10. Schwering, F., N. N. Puri, and C. M. Butler, "Modified Diakoptic theory of antennas," IEEE Trans. Antennas Propagat., Vol. 34, 1273-1281, 1986.
    doi:10.1109/TAP.1986.1143753

    11. Ooms, S. and D. D. Zutter, "A new iterative diakoptics-based multilevel moments method for planar circuits," IEEE Trans. Microwave Theory Technol., Vol. 46, 280-291, 1998.
    doi:10.1109/22.661716

    12. Suter, E. and J. R. Mosig, "A subdomain multilevel approach for the efficient MoM analysis of large planar antennas," Microwave Opt. Technol Lett., Vol. 26, 270-277, 2000.
    doi:10.1002/1098-2760(20000820)26:4<270::AID-MOP20>3.0.CO;2-C

    13. Kwon, S. J., K. Du, and R. Mittra, "Characteristic basis function method: A numerically efficient technique for analyzing microwave and RF circuits," Microwave Optical Technol. Lett., Vol. 38, No. 6, 444-448, 2003.
    doi:10.1002/mop.11085

    14. Yeo, J., V. V. S. Prakash, and Ra. Mittra, "Efficient analysis of a class of microstrip antennas using the Characteristic basis function method (CBFM)," Microwave Optical Technol Lett., Vol. 39, No. 6, 456-464, 2003.
    doi:10.1002/mop.11247

    15. Prakash, V. V. S. and R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations," Microwave Optical Technol Lett., Vol. 36, No. 2, 95-100, 2003.
    doi:10.1002/mop.10685

    16. Yeung, E. K. L. and J. R. Mosig, "Multilayer microstrip structure analysis with matched load simulation," IEEE Trans. Antennas Propagat., Vol. 43, No. 1, 143-149, 1995.

    17. Mosig, J. R., "Arbitrarily shaped microstrip structures and their analysis with a mixed potential integral equation," IEEE Trans. Microwave Theory Tech., Vol. 36, No. 2, 314-323, 1988.
    doi:10.1109/22.3520

    18. Rao, S. M., D. R. Wilton, and A. W. Clisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas and Propagat., Vol. 30, No. 3, 409-418, 1982.
    doi:10.1109/TAP.1982.1142818

    19. King, A. S. and W. J. Bow, "Scattering from a finite array of microstrip patches," IEEE Trans. Antennas Propaga., Vol. 40, No. 7, 770-774, 1992.
    doi:10.1109/8.155741

    20. Ling, E. and J. M. Jin, "Scattering and radiation analysis of microstrip antennas using discrete complex image method and reciprocity theorem," Microwave Opt. Technol. Lett., Vol. 16, No. 4, 212-216, 1997.
    doi:10.1002/(SICI)1098-2760(199711)16:4<212::AID-MOP5>3.0.CO;2-O