Vol. 48

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2004-06-22

Space-Time Reversal Symmetry Properties of Electromagnetic Green's Tensors for Complex and Bianisotropic Media

By Victor A. Dmitriev
Progress In Electromagnetics Research, Vol. 48, 145-184, 2004
doi:10.2528/PIER04020501

Abstract

Space-Time reversal symmetry properties of free-Space electromagnetic Green's tensors for complex and bianisotropic homogeneous media are discussed. These properties are defined by symmetry of the medium under consideration, of the point sources and of the vector S connecting the source and the point of observation. The constraints imposed on Green's tensors by the restricted Time reversal, by the center and anticenter of symmetry are independent on the vector S orientation. Other Space-Time reversal operators lead to constraints on Green's tensors only for some special directions in Space. These directions are along the (anti)axes and (anti)planes and normal to the (anti)axes and (anti)planes. The full system of the continuous magnetic point groups for description of Space-Time reversal symmetry of Green's tensors is defined and a general group-theoretical method for calculation of simplified forms of Green's tensors is presented.

Citation

 (See works that cites this article)
Victor A. Dmitriev, "Space-Time Reversal Symmetry Properties of Electromagnetic Green's Tensors for Complex and Bianisotropic Media," Progress In Electromagnetics Research, Vol. 48, 145-184, 2004.
doi:10.2528/PIER04020501
http://jpier.org/PIER/pier.php?paper=0402051

References


    1. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, IEEE Press, New York, 1994.

    2. Kong, J. A., Theorems of bianisotropic media, Proc. IEEE, Vol. 60, 1036-1046, 1972.

    3. Altman, C. and K. Suchy, "Reciprocity," Spatial Mapping and Time Reversal in Electromagnetics, 1991.

    4. Hamermesh, M., Group Theory and its Application to Physical Problems, Addison-Wesley, Reading, MA, 1962.

    5. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.

    6. Barybin, A. A. and V. A. Dmitriev, Modern Electrodynamics and Coupled-Mode Theory: Application to Guided-Wave Optics, Rinton Press, Princeton, USA, 2002.

    7. Tai, C.-T., Dyadic Green's Functions in Electromagnetic Theory, IEEE Press, New York, 1994.

    8. Kritikos, H. N., "Rotational symmetries of electromagnetic radiation fields," IEEE Trans. Antennas Propag., Vol. 31, 377-382, 1983.
    doi:10.1109/TAP.1983.1143036

    9. Dmitriev, V., "Tables of the second rank constitutive tensors for linear homogeneous media described by the point magnetic group of symmetry," Progress in Electromagnetics Research, Vol. 28, 47-99, 2000.
    doi:10.2528/PIER99062502

    10. Lindell, I. V., A. H. Sihvola, and K. Suchy, "Six-vector formalism in electromagnetics of bi-anisotropic media," J. Electromagn. Waves Applic., Vol. 9, 887-903, 1995.

    11. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, Cambridge, Massachusets, 1998.

    12. Gvozdev, V. V. and A. N. Serdjukov, "Green's function and fields of the moving charges in a gyrotropic medium," Optics and Spectr., Vol. 47, 544-548, 1979.

    13. Bassiri, S., N. Engheta, and C. H. Papas, "Dyadic Green's function and dipole radiation in chiral media," Alta Freq., Vol. LV, 83-88, 1986.

    14. Sakoda, K., Optical Properties of Photonic Crystals, Springer- Verlag, Berlin, 2001.

    15. Chen, H. C., Theory of Electromagnetic Waves, McGraw-Hill, New York, 1983.

    16. Cheng, D., "Green dyadic and dipole radiation in triaxial omega medium," Electron. Lett., Vol. 32, 529-530, 1996.
    doi:10.1049/el:19960393

    17. Cheng, D., "Green's dyadics in reciprocal uniaxial bianisotropic media by cylindrical vector wave functions," Phys. Rev. E, Vol. 54, 2917-2924, 1996.
    doi:10.1103/PhysRevE.54.2917

    18. Cottis, P. G. and G. D. Kondylis, "Properties of the dyadic Green's function for an unbounded anisotropic medium," IEEE Trans. Antennas Propag., Vol. AP-43, 154-161, 1995.
    doi:10.1109/8.366377

    19. Lindell, I. V. and F. Olyslager, "Analytic Green dyadic for a class of nonreciprocal anisotropic media," IEEE Trans. Antennas Propag., Vol. AP-45, 1563-1565, 1997.
    doi:10.1109/8.633867

    20. Lindell, I. V. and W. S. Weiglhofer, "Green dyadic for a uniaxial bianisotropic medium," IEEE Trans. Antennas Propag., Vol. 42, 1013-1016, 1994.
    doi:10.1109/8.299606

    21. Olyslager, F., ''Time-harmonic two-and three-dimensional Green's dyadics for general uniaxial bianisotropic media, Vol. AP-43, 430-434, '' IEEE Trans. Antennas Propag., Vol. AP-43, 430-434, 1995.

    22. Olyslager, F. and B. Jakoby, Time-harmonic two-and threedimensional Green dyadics for a special class of gyrotropic bianisotropic media, IEE Proc.-Microw. Antennas Propag., Vol. 143, 413-416, 1996.

    23. Olyslager, F. and I. V. Lindell, "Closed-form Green's dyadics for a class of media with axial bi-anisotropy," IEEE Trans. Antennas Propag., Vol. AP-46, 1888-1890, 1998.
    doi:10.1109/8.743841

    24. Olyslager, F. and I. V. Lindell, "Green's dyadics for a class of bi-anisotropic media with nonsymmetric bi-anisotropic dyadics," Int. J. Electron. Commun., Vol. 52, 32-36, 1998.

    25. Tan, E. L., Vector wave function expansion of dyadic Green's functions for bianisotropic media, IEE Proc.-Microw. Antennas Propag., Vol. 149, 57-63, 2002.

    26. Weiglhofer, W. S., "Analytic methods and free-space dyadic Green's functions," Radio Science, Vol. 28, 847-857, 1993.

    27. Weiglhofer, W. S., "Dyadic Green function for unbounded general uniaxial bianisotropic medium," Int. J. Electronics, Vol. 77, 105-115, 1994.

    28. Comay, E., "The problem of spherically symmetric electromagnetic radiation," Am. J. Phys., Vol. 70, 715-716, 2002.
    doi:10.1119/1.1477432

    29. Suchy K., C. Altman, and A. Schatzberg, "Orthogonal mappings of time-harmonic electromagnetic fields in inhomogeneous (bi)anisotropic media," Radio Science, Vol. 20, 149-160, 1985.

    30. Electromagnetic Symmetry, Baum C. E. and N. H. Kritikos (eds.), Taylor & Francis, Washington, 1995.

    31. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, p.I, McGraw-Hill, New York, 1953.

    32. Nye, J. F., Physical Properties of Crystals, Oxford University Press, New York, 1993.