Vol. 43

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Topological Intensity Shifts of Electro-Magnetic Field in Lobachevskian Spaces. Olbers Paradox Solved, Deep Space Communication, and the New Electromagnetic Method of Gravitational Wave Detection

By
Progress In Electromagnetics Research, Vol. 43, 163-179, 2003
doi:10.2528/PIER03032701

Abstract

The major new result is the behavior of the intensity of electromagnetic radiationinLobac hevskian (hyperbolic) spaces. Equation (2) expresses change in intensity vs. space curvature and distance. Non existence of Olbers paradox in a Lobachevskian universe is shown. A new electromagnetic method for detection of gravitational waves is proposed. Explanation of observed perioditicy in redshifts is given. Problems of deep space communications are discussed.

Citation

 (See works that cites this article)
, "Topological Intensity Shifts of Electro-Magnetic Field in Lobachevskian Spaces. Olbers Paradox Solved, Deep Space Communication, and the New Electromagnetic Method of Gravitational Wave Detection," Progress In Electromagnetics Research, Vol. 43, 163-179, 2003.
doi:10.2528/PIER03032701
http://jpier.org/PIER/pier.php?paper=0303271

References


    1. Bedford, T., M. Keane, and K. Series, Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Oxford University Press, 1991.

    2. von Brzeski, J. G. and V. von Brzeski, "Topological wavelength shifts, electromagnetic field in Lobachevskian geometry," Progress in Electromagnetic Research, Vol. 39, 281-298, 2003.
    doi:10.2528/PIER02112101

    3. Burbigde, G. and S. O'Dell, Ap. J. Lett, Vol. 154, No. L41, 1972.

    4. Buseman, H. and P. J. Kelly, Projective Geometry and Projective Metrics, Academic Press, 1953.

    5. Haus, H. A., Waves and Fields in Optoelectronics, Prentice Hall, 1984.

    6. Hecht, E. and A. Zajac, Optics, Adison-Wesley Publishing Company, 1974.

    7. Mielnik, B., "Generalized quantum mechanics," Commun. Math. Phys., Vol. 37, 1973.

    8. Ricci, F., "The search for gravitational waves: Anexp erimental physics challenge," Contemporary Physics, Vol. 39, 1998.
    doi:10.1080/001075198182062

    9. Saulson, P. R., "Fundamentals of interferometric gravitational wave detectors," World Scientific, 1994.

    10. Schempp, W., "Analog RADAR signal design and digital signal pocessing, a Heisenberg Nilpotent Lie Group Approach," Mathematische Forschungsberichte, Vol. 147, 1985.

    11. Swirko, Yu. P. and N. I. Zheludiev, Polarization of Light in Nonlinear Optics, John Wiley & Sons Ltd., 1998.

    12. Terrel, J., Phys. Rev, Vol. 116, 1041, 1959.

    13. Tifft, W., Ap. J., Vol. 206, 38, 1976.