Vol. 42
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
Analysis of the Reflection Properties in Electromagnetic Bandgap Coplanar Waveguides Loaded with Reactive Elements
By
, Vol. 42, 27-48, 2003
Abstract
Abstract-In this work, we study the reflection properties of coplanar waveguides (CPW) periodically loaded with shunt connected capacitances and periodically perturbed by varying the slot width. These structures are of interest because the low pass frequency response with spurious frequency bands, inherent to the presence of capacitors, can be improved. This is achieved through the attenuation of frequency parasitics that is obtained by the introduction of slot width modulation. Both sinusoidal and square wave patterns are considered and the effects of the relative position of reactive elements with regard to the perturbation geometry is analysed. According to coupled mode theory, the central frequencies of the rejected bands in periodic transmission media are given by the spectrum of the perturbation function. However, it is demonstrated that, due to the presence of capacitors, multiple spurious bands can be simultaneously suppressed even in the case of a singly tuned (sinusoidal) perturbation geometry. This result points out that the frequency selective behaviour associated to the presence of slot width modulation can not be interpreted in the framework of coupled mode theory, since the rejection of spurious bands in periodic loaded CPWs is not merely given by the spectrum of the perturbation geometry.
Citation
"Analysis of the Reflection Properties in Electromagnetic Bandgap Coplanar Waveguides Loaded with Reactive Elements," , Vol. 42, 27-48, 2003.
doi:10.2528/PIER03022504
References

1. Hsia, R. P., W. M. Zhang. C. W. Domier, and N. C. Luhmann, "A hybrid nonlinear delay line-based broad-band phased antenna array system," IEEE Microwave and Guided Wave Letters, Vol. 8, 182-184, 1998.
doi:10.1109/75.668702

2. Fernandez, M., E. Delos, X. Melique, S. Arscott, and D. Lippens, "Monolithic coplanar transmission lines loaded by heterostructure barrier varactors for a 60 GHz tripler," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 12, 498-500, 2001.
doi:10.1109/7260.974558

3. Barker, N. S. and G. M. Rebeiz, "Distributed MEMS truetime delay phase shifters and wide-band switches," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 11, 1881-1890, 1998.
doi:10.1109/22.734503

4. Borgioli, A., Y. Liu, A. S. Nagra, and R. A. York, "Low-loss distributed MEMS phase shifter," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 1, 7-9, 2000.
doi:10.1109/75.842070

5. Carman, E., K. Giboney, M. Case, M. Kamegawa, R. Yu, K. Abe, M. J. W. Rodwell, and J. Franklin, "28-39 GHz distributed harmonic generation on a soliton nonlinear transmission line," IEEE Microwave Guided Wave Lett., Vol. 1, 28-39, 1991.
doi:10.1109/75.80703

6. Edwards, T. C. and M. B. Steer, Foundations of Interconnect and Microstrip Design, third edition, John Wiley and Sons Ltd, 2000.

7. Yang, F. R., K. P. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic-bandgap structure and its applications for microwave circuits," IEEE Trans. Microwave Theory Tech., Vol. 47, 1999.

8. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, 1995.

9. Peral, E., J. Capmany, and J. Martí, "Iterative solution to the Gel' Fand-Levitan-Marchenko coupled equations and application to synthesis of fiber gratings," IEEE Journal of Quantum Electronics, Vol. 32, No. 12, 2078-2084, 1996.
doi:10.1109/3.544753

10. Katsenelenbaum, B. Z. and L. Mercader, M Pereyaslavets, Vol. 44, M. Sorolla, and M. Thumm, Theory of NonuniformWave guides, Vol. 44, ser. IEE Electromagn. Waves, London, U.K. IEE Press, 1998.

11. Qian, Y.V. Radistic, and T. Itoh, "Simulation and experiment of photonic band-gap structures for microstrip circuits," Proc. Asia- Pacific Microwave Conf., No. 12, 585-588, 1997.

12. Radistic, V., Y. Qian, R. Coccioli, and T. Itoh, "Novel 2- D photonic band gap structures for microstrip lines," IEEE Microwave Guided Wave Lett., Vol. 8, No. 2, 69-71, 1998.
doi:10.1109/75.658644

13. Kim, T. and C. Seo, "A novel Photonic bandgap structure for low-pass filter of wide stopband," IEEE Microwave Guided Wave Lett., Vol. 10, No. 1, 13-15, 2000.
doi:10.1109/75.842072

14. Akalin, T., M. A. G. Laso, T. Lopetegi, O. Vanbesien, M. Sorolla, and D. Lippens, "EBG-type microstrip filtres with one and twosided patterns," Microwave and Optical Technology Lett., Vol. 30, No. 7, 69-72, 2001.
doi:10.1002/mop.1223

15. Lopetegi, T., M. A. G. Laso, M. J. Erro, D. Benito, M. J. Garde, F. Falcone, and M. Sorolla, "Novel photonic bandgap microstrip structures using network topology," Microwave Opt. Tech. Lett., Vol. 25, No. 4, 33-36, 2000.
doi:10.1002/(SICI)1098-2760(20000405)25:1<33::AID-MOP10>3.0.CO;2-T

16. Lopetegi, T., M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M. J. Garde, M. Sorolla, and M. Guglielmi, "New microstrip wiggly-line filters with spurious passband suppression," IEEE Trans Microwave Theo Tech., Vol. 49, No. 9, 1593-1598, 2001.
doi:10.1109/22.942571

17. Radisic, V., Y. Qian, and T. Itoh, "Broad-band power amplifier using dielectric photonic bandgap structures," IEEE Microwave Guided Wave Lett., Vol. 8, No. 1, 13-15, 1998.
doi:10.1109/75.650973

18. Lee, Y-T., J-S. Lim, J-S. Park, D. Ahn, and S. Nam, "A novel phase noise reduction technique in oscillators using defected ground structure," IEEE Microwave Wireless Comp. Lett., Vol. 12, No. 2, 39-41, 2002.
doi:10.1109/7260.982870

19. Yun, T-Y. and K. Chang, "Uniplanar one-dimensional photonic bandgap structures and resonators," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 3, 549-553, 2001.
doi:10.1109/22.910561

20. Fu, Y-Q., G. H. Zhang, and N. C. Yuan, "A novel EBG coplanar waveguide," IEEE Microwave and Wireless Components Lett., Vol. 11, No. 11, 447-449, 2001.
doi:10.1109/7260.966037

21. Sor, J., Y. Qian, and T. Itoh, "Miniature low loss CPW periodic structure for filter applications," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 12, 2336-2341, 2001.
doi:10.1109/22.971618

22. Pozar, D. M., Microwave Engineering, Addison Wesley, Reading, MA, 1990.

23. Lopetegi, T., M. A. G. Laso, M. J. Erro, M. Sorolla, and M. Thumm, "Analysis and design of EBG structures for microstrip lines by using the coupled mode theory," IEEE Microwave and Wireless Components Lett., Vol. 12, No. 11, 441-443, 2002.
doi:10.1109/LMWC.2002.805538

24. Laso, M. A. G., T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, and M. Sorolla, "Multiple-frequency tuned photonic bandgap microstrip structures," IEEE Microwave and Guided Wave Lett., Vol. 10, No. 6, 220-222, 2000.
doi:10.1109/75.852421