Vol. 42
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
Electromagnetic Holography on Cylindrical Surfaces Using k -Space Transformations
By
, Vol. 42, 303-337, 2003
Abstract
Spectral decomposition in 2-D kz-m space is used to develop transfer functions that relate modal electromagnetic fields on concentric cylindrical surfaces. It is shown that all time-average radiated power is generated by superluminal modes (phase velocity vz > c) which are confined to the baseband |kz| > k0. Subluminal modes, with kz outside of the radiated band, are radially evanescent but permit recovery of imaging resolution that exceeds the usual diffraction limit provided by the radiated fields. Outward translation between cylinder surfaces is found to have a stable low-pass 2-D transfer characteristic in kz-m space, where spatial resolution decreases with increased radius. The inverse transfer functions for inward translation of field components (termed backpropagation) employ a high-pass process that amplifies subluminal evanescent modes, thus potentially enhancing resolution while also amplifying measurement noise. A 2-D filter with flat elliptical passband and Gaussian roll-off is used to mitigate noise amplification with backpropagation. Outward translation and backpropagation are tested using sampled data on finite-length cylinders for various noise levels.
Citation
"Electromagnetic Holography on Cylindrical Surfaces Using k -Space Transformations," , Vol. 42, 303-337, 2003.
doi:10.2528/PIER03020302
References

1. Ransom, P. L. and R. Mittra, "A method of locating defective elements in large phased arrays," Proc. IEEE, Vol. 59, 1029-1030, 1971.

2. Harms, P. H., J. G. Maloney, M. P. Kesler, E. J. Kunster, and G. S. Smith, "A system for unobtrusive measurement of surface currents," IEEE Trans. Antennas Propagat., Vol. 49, 174-185, 2001.
doi:10.1109/8.914266

3. Guler, M. G. and E. B. Joy, "High resolution spherical microwave holography," IEEE Trans. Antennas Propagat., Vol. 43, 464-472, 1995.
doi:10.1109/8.384190

4. Joy, E. B.M. G. Guler, C. H. Barrett, A. R. Dominy, and R. E. Wilson, "Near-field measurement of radome anomalies," Proc. 9th Antenna Measurement Tech. Assoc. Symposium, No. 10, 235-240, 1987.

5. Guler, M. G., "Spherical microwave holography," Ph.D. dissertation, No. 12, 1993.

6. Medgyesi-Mitchang, L. N., P. G. Moore, D. L. Smith, and S. G. Lambrakos, "Ultra-near fields of bodies of translation with discontinuities: ω-k representations," J. Electromagn. Waves Appl., Vol. 15, 1701-1723, 2001.

7. Medgyesi-Mitchang, L. N., P. G. Moore, D. L. Smith, and S. G. Lambrakos, "Ultra-near fields of penetrable bodies of translation: ω-k representations," J. Electromagn. Waves Appl., Vol. 16, 1467-1483, 2002.

8. Wawrzyniak, D. J., "Electromagnetic imaging of electromagnetic scatterers," M.S. thesis, No. 6, 1997.

9. Williams, E. G., Fourier Acoustics: SoundR adiation and NearfieldA coustical Holography, Academic Press, 1999.

10. Williams, E. G., "Supersonic acoustic intensity," J. Acoust. Soc. Am., Vol. 97, 121-127, 1995.
doi:10.1121/1.412991

11. Williams, E. G., B. Houston, and J. A. Bucaro, "Experimental investigation of the wave propagation on a point-driven, submerged capped cylinder using k-space analysis," J. Acoust. Soc. Am., Vol. 87, 513-522, 1990.
doi:10.1121/1.398922

12. Williams, E. G., H. D. Dardy, and K. B. Washburn, "Generalized nearfield acoustical holography for cylindrical geometry: Theory and experiment," J. Acoust. Soc. Am., Vol. 81, 389-407, 1987.
doi:10.1121/1.394904

13. Morgan, M. A., "Electromagnetic source imaging using superluminal cylindrical modes," Abstracts for USNC/URSI Radio Science Meeting, No. 7, 1999.

14. Morgan, M. A., "Near-field imaging using cylindrical harmonic backpropagation," Abstracts for Progress in Electromagnetics Research Symposium, No. 7, 2000.

15. Stutzman, W. L. and G. A. Thiele, Antenna Theory andDesign, 2nd Ed., Section 1.6, John Wiley and Sons, 1998.

16. Silver, S., Microwave Antenna Theory andDesign, Chapter 7, McGraw-Hill, New York, 1949.

17. Ramo, S., J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communications Electronics, 3rd Ed., Chapter 8, Wiley, New York, 1994.

18. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Chapter 9, Dover, New York, 1970.

19. Papoulis, A., Signal Analysis, Chapter 3, McGraw-Hill, New York, 1977.