Vol. 39
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
FDTD Modeling of a Vibrating Intrinsic Reverberation Chamber
By
, Vol. 39, 47-59, 2003
Abstract
The field conditions inside a vibrating intrinsic reverberation chamber (VIRC) are examined. By the use of the Finite Difference Time Domain (FDTD) method,the field strength in the VIRC is calculated,and an investigation of the field uniformity and the field distribution is performed. The modes inside the cavity are excited by applying an appropriately modulated waveform on a dipoles gap. The use of this kind of waveform enables the study of the field conditions over a wide frequency range. On the contrary,an implementation of the field excitation with an unmodulated carrier would require a simulation of the FDTD method at each frequency of interest. Thus,a considerable reduction in the simulation time is achieved. The results presented,describing the field behavior inside the enclosure,agree with theory to a high degree.
Citation
"FDTD Modeling of a Vibrating Intrinsic Reverberation Chamber," , Vol. 39, 47-59, 2003.
doi:10.2528/PIER02050804
References

1. Draft IEC 61000-4-21, 2001, 2001, 61000-4, Electromagnetic Compatibility (EMC) Part 4: Testing and Measurement Techniques.

2. Hill, D. A., "Electronic mode stirring for reverberation chambers," IEEE Trans.Ele ctromagn.Comat., Vol. 36, No. 4, 294-299, 1994.
doi:10.1109/15.328858

3. Petirsch, M. and A. J. Schwab, "In vestigation of the field uniformity of a mode-stirred chamber using diffusors based on acoustic theory," IEEE Trans.Ele ctromagn.Compat., Vol. 41, 446-451, 1999.

4. Perini, J. and L. S. Cohen, "An alternative way to stir the fields in a mode stirred chamber," IEEE EMC Symposium, 633-637, 2000.

5. Godfrey, E. A., "Effects of corrugated walls on the field uniformity of reverberation chambers at low frequencies," IEEE EMC Symposium, 23-28, 1999.

6. Huang, Y. and D. J. Edwards, "An investigation of the electromagnetic field inside a moving wall mode-stirred chamber," IEE Conference on EMC, 115-119, 1992.

7. Lefering, F., "High field strength in a large volume: the intrinsic reverberation chamber," IEEE EMC Symposium, 24-27, 1998.

8. Leferink, F., J. C. Boudenot, and W. Etten, "Exp erimental results obtained in the vibrating intrinsic reverberation chamber," IEEE EMC Symposium, 639-644, 2000.

9. Leferink, F. and W. Etten, "Generating an EMC test field using a vibrating intrinsic reverberation chamber," EMC Society Newsletter, 2001.

10. Taflove, A., Computational Electrodynamics, Artech House.
doi:10.1109/TAP.1966.1138693

11. Yee, K., "Numerical solution of initial boundary value problems involving maxwells equations in isotropic media," IEEE Trans. Ant. Prop., Vol. 14, No. 3, 302-307, 1966.

12. Bai, L., L. Wang, B. Wang, and J. Song, "Rev erberation chamber modeling using FDTD," IEEE EMC Symposium, 7-11, 1999.

13. Harima, K., "FDTD analysis of electromagnetic fields in a reverberation chamber," IEICE Trans.Commun., Vol. E81-B, 81, 1998.

14. Chung, S., J. Rhee, H. Rhee, and K. Lee, "Field uniformity characteristics of an asymmetric structure reverberation chamber by FDTD method," IEEE EMC Symposium, 2001.

15. Zhang, D., E. Li, and W. Yuang, "Study of independent sampling points in a reverberation chamber with two stirrers," IEEE EMC Symposium, 2001.

16. Rosengren, K., P . Kildal, C. Carlsson, and J. Carlsson, "Characterization of antennas for mobile and wireless terminals by using reverberation chambers: Improved accuracy by platform stirring," IEEE AP-S Symposium, 2001.

17. Hoijer, M., A. Andersson., O. Lunden, and M. Backstrom, "Numerical simulations as a tool for optimizing the geometrical design of reverberation chambers," IEEE EMC Symposium, 2000.
doi:10.1080/027263402753427646

18. Kouveliotis, N. K., P . T. Trakadas, A. I. Stefanogiannis, and C. N. Capsalis, "Field prediction describing scattering by a one dimensional smooth random rough surface," Electromagnetics, Vol. 22, No. 1, 27-35, 2002.

19. Boonzaaier, J. J. and C. W. I. Pistorius, "Thin wire dipoles A finite-difference time-domain approach," Electronics Letters, Vol. 26, No. 22, 1891-1892, 1990.

20. Haykin, S., Communications Systems, Wiley, 1983.

21. Svetanoff, D., J. Weibler, R. Cooney, M. Squire, S. Zielinski, M. Hatfield, and M. Slocum, "Dev elopment of high performance tuners for mode-stirring and mode-tuning applications," IEEE EMC Symposium, 29-34, 1999.
doi:10.1109/15.99120

22. Kostas, J. G. and B. Boverie, "Statistical model for a mode-stirred chamber," IEEE Trans.Ele ctromagn.Comp at., Vol. 33, 366-370, 1991.
doi:10.1109/15.709418

23. Hill, D. A., "Plane wave integral representation for fields in reverberation chambers," IEEE Trans.Ele ctromagn.Comp at., Vol. 40, 209-217, 1998.