Vol. 37

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

A Composite Model for Estimation of Polarimetric Thermal Emission from Foam-Covered Wind-Driven Ocean Surface

By Jin Kong
Progress In Electromagnetics Research, Vol. 37, 143-190, 2002


This paper presents theoretical studies of polarimetric thermal emission from foam-covered ocean surface based on a composite volume and rough surface scattering model using the radiative transfer theory. The sea foam is modeled as a layer containing randomly distributed thin-film water bubbles. The small perturbation method (SPM) is used for random rough ocean surface, where the bistatic scattering is calculated up to the second order. The radiative transfer equations with a rough interface are solved using an iterative technique. Model predictions are compared with empirical expressions for foam emissivity and with the WINDRAD measurement data.


 (See works that cites this article)
Jin Kong, "A Composite Model for Estimation of Polarimetric Thermal Emission from Foam-Covered Wind-Driven Ocean Surface," Progress In Electromagnetics Research, Vol. 37, 143-190, 2002.


    1. Yueh, S. H., R. Kwok, F. K. Li, S. V. Nghiem, and W. J. Wilson, "Polarimetric passive remote sensing of ocean wind vectors," Radio Sci., Vol. 29, No. 4, 799-814, July–Aug. 1994.

    2. Yueh, S. H., S. V. Nghiem, R. Kwok, W. J. Wilson, F. K. Li, J. T. Johnson, and J. A. Kong, "Polarimetric thermal emission from periodic water surface," Radio Sci., Vol. 29, No. 1, 87-96, Jan.–Feb. 1994.

    3. Johnson, J. T., J. A. Kong, R. T. Shin, D. H. Staelin, K. O’Neill, and A. W. Lananick, "Third Stokes parameter emission from a periodic water surface," IEEE Trans. Geosci. Remote Sensing, Vol. 31, No. 5, 1066-1080, Sept. 1993.

    4. Johnson, J. T., J. A. Kong, R. T. Shin, S. H. Yueh, S. V. Nghiem, and R. Kwok, "Polarimetric thermal emission from rough ocean surfaces," J. Electromagnetic Waves and Applications, Vol. 8, No. 1, 43-59, 1994.

    5. Williams, G. F., "Microwave radiometry of the ocean and the possibility of marine wind velocity determination from satellite observations," J. Geophys. Res., Vol. 74, No. 18, 4591-4594, Aug. 1969.

    6. Williams, G. F., "Microwave emissivity measurements of bubbles and foam," IEEE Trans. Geosci. Electron., Vol. 9, No. 4, 221-224, Oct. 1971.

    7. Smith, P. M., "The emissivity of sea foam at 19 and 37 GHz," IEEE Trans. Geosci. Remote Sensing, Vol. 26, No. 5, 541-547, Sept. 1988.

    8. Stogryn, A., "The emissivity of sea foam at microwave frequencies," J. Geophys. Res., Vol. 77, No. 9, 1658-1666, Mar. 1972.

    9. Pandey, P. C. and R. K. Kakar, "An empirical microwave emissivity model for a foam-covered sea," IEEE J. Oceanic Eng., Vol. 7, No. 3, 135-140, July 1982.

    10. Droppleman, J. D., "Apparent microwave emissivity of sea foam," J. Geophys. Res., Vol. 75, No. 3, 696-698, Jan. 1970.

    11. Rosenkranz, P. W. and D. H. Staelin, "Microwave emissivity of ocean foam and its effect on nadiral radiometric measurements," J. Geophys. Res., Vol. 77, No. 33, 6528-6538, Nov. 1972.

    12. Huang, X. Z. and Y. Q. Jin, "Scattering and emission from twoscale randomly rough sea surface with foam scatterers," IEE Proc. H (Microwaves, Antennas and Propagat.), Vol. 142, No. 2, 109-114, Apr. 1995.

    13. Manahan, E. C. and G. MacNiocaill, Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes, D. Reidel Pub. Co., Boston, 1986.

    14. Yueh, S. H., W. J. Wilson, F. K. Li, S. V. Nghiem, and W. B. Ricketts, "Polarimetric measurements of sea surface brightness temperatures using an aircraft K-band radiometer," IEEE Trans. Geosci. Remote Sensing, Vol. 33, No. 1, 85-92, Jan. 1995.

    15. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley, New York, 1985.

    16. Shin, R. T. and J. A. Kong, "Radiative transfer theory for active remote sensing of two-layer random medium," Progress In Electromagnetics Research, J. A. Kong (Ed.), Elsevier Science, New York, 1989.

    17. Durden, S. P. and J. F. Vesecky, "A physical radar cross-section model for a wind-driven sea with swell," IEEE J. Oceanic Eng., Vol. 10, 445-457, Oct. 1985.

    18. Yueh, S. H., "Modeling of wind direction signals in polarimetric sea surface brightness temperature," IEEE Trans. Geosci. Remote Sensing., Vol. 35, No. 6, 1400-1418, Nov. 1997.

    19. Liebe, H. J., "MPM—an atmospheric millimeter-wave propagation model," Int’l J. Infr. Millimeter Waves, Vol. 10, No. 6, 631-650, June 1989.

    20. Hunt, G. E., "A review of computational techniques for analysing the transfer of radiation through a model cloudy atmosphere," J. Quant. Spectrosc. Radiat. Transfer., Vol. 11, No. 6, 655-690, June 1971.

    21. Brussaard, G. and P. A. Watson, Atmospheric Modeling and Millimeter Wave Propagation, Chapman & Hall, 1995.

    22. Yeang, C. P., S. H. Yueh, K. H. Ding, and J. A. Kong, "Atmospheric effect on microwave polarimetric passive remote sensing of ocean surfaces," Radio Sci., Vol. 34, No. 2, 521-537, Mar.–Apr. 1999.

    23., U.S. Standard Atmosphere, National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, United States Air Force, 1976.

    24. Liebe, H. J., "An updated model for millimeter wave propagation in moist air," Radio Sci., Vol. 20, No. 5, 1069-1089, Sept.–Oct. 1985.

    25. Chan, H. L. and A. K. Fung, "A theory of sea scatter at large incident angles," J. Geophys. Res., Vol. 82, No. 24, 3439-3444, Aug. 1977.

    26. Cox, C. S. and W. H. Munk, "Measurement of the roughness of the sea surface from photographs of the sun glitter," J. Opt. Soc. Am., Vol. 44, No. 11, 838-850, 1954.

    27. Aragon, S. R. and M. Elwenspoek, "Mie scattering from thin spherical bubbles," J. Chem. Phys., Vol. 77, No. 7, 3406-3413, Oct. 1982.