Vol. 41

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Simulated and Measured Performance of a Patch Antenna on a 2-Dimensional Photonic Crystals Substrate

By
Progress In Electromagnetics Research, Vol. 41, 257-269, 2003
doi:10.2528/PIER02010891

Abstract

This paper deals with the use of Photonic Crystal (PC) structures as substrates in patch antenna configurations in order to mitigate the effect of the surface wave mode propagation. The case of a single antenna has been studied. A comparison between a conventional substrate based patch and a patch with a PC as substrate has been performed. The antennas were fabricated and measured. Improvements in all the main parameters of the antenna were obtained when usinga PC. The frequency dependence of the radiation patterns is significantly reduced when using a PC as substrate.

Citation


, "Simulated and Measured Performance of a Patch Antenna on a 2-Dimensional Photonic Crystals Substrate," Progress In Electromagnetics Research, Vol. 41, 257-269, 2003.
doi:10.2528/PIER02010891
http://jpier.org/PIER/pier.php?paper=02010891

References


    1. Bahl, I. J. and P. Bhartia, Microstrip Antennas, Artech House, 1980.

    2. James, J. R., 1981., 1981.

    3. James, J. R. and P. S. Hall, Handbook of Microstrip Antennas, IEE Peter Peregrinus Ltd., 1989.

    4. Balanis, C. A., Antenna Theory. Analysis and Design, Second edition, John Wiley & Sons, Inc., 1997.

    5. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals. Molding the flow of light, Princeton University Press, 1995., 1995.

    6. de Maagt, P. J. I., R. Gonzalo, and A. Reynolds, "PBG Crystals: periodic dielectric materials that control EM wave propagation," Microwave Engineering Europe, No. 10, 35-43, 1999.

    7. Scherer, A., T. Doll, E. Yablonovitch, H. O. Everiit, and J. A. Higgins, "Mini-special issue on electromagnetic crystal structures, design, synthesis, and applications," IEEE Microwave Theory and Techniques, Vol. 47, No. 11, 1999.

    8. Brown, E. R., C. D. Parker, and E. Yablonovith, "Radiation properties of a planar antenna on a photonic-crystal substrate," Journal of Optic Soc. Am. B., Vol. 10, No. 2, 404-407, 1993.

    9. Sigalas, M. M., R. Biswas, and K. M. Ho, "Theoretical study of dipole antennas on photonic band-gap materials," Microwave and Optical Technology Letters, Vol. 13, No. 4, 205-209, 1996.
    doi:10.1002/(SICI)1098-2760(199611)13:4<205::AID-MOP9>3.0.CO;2-Q

    10. Yang, D., N. G. Alexopoulos, and E. Yablonovitch, "Photonic band-gap materials for high-gain printed circuit antennas," IEEE Trans. on Antenna and Propagation, Vol. 45, No. 1, 1997.

    11. Sigalas, M. M., R. Biswas, Q. Li, D. Crounch, W. Lleung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K. M. Ho, "Dipole antennas on photonic band-gap crystals — experiment and simulation," Microwave and Optical Technology Letters, Vol. 15, No. 3, 153-158, 1997.
    doi:10.1002/(SICI)1098-2760(19970620)15:3<153::AID-MOP10>3.0.CO;2-8

    12. Quian, Y., R. Coccioli, D. Sievenpiper, V. Radisic, E. Yablonovitch, and T. Itoh, "A microstrip patch antenna usingno vel photonic band-gap structures," Microwave Journal, No. 1, 66-76, 1999.

    13. Agi, K., J. Malloy, E. Schamiloglu, M. Mojahedi, and E. Niver, "Integration of microstrip patch antenna with a two-dimensional photonic crystal substrate," Electromagnetics, Vol. 19, No. 3, 277-290, 1999.

    14. Sigalas, M. M., R. Biswas, K. M. Ho, W. Leung, G. Tuttle, and D. D. Crounch, "The effect of photonic crystals on dipole antennas," Electromagnetics, Vol. 19, No. 3, 291-303, 1999.

    15. Gonzalo, R., P. J. I. de Maagt, and M. Sorolla, "Enhanced patch antenna performance by suppressingsurface waves usingphotonic band-gap structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2131-2138, 1999.
    doi:10.1109/22.798009

    16. Colburn, J. S. and Y. Rahmat-Samii, "Patch antennas on externally perforated high dielectric constant substrates," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 12, 1785-1794, 1999.
    doi:10.1109/8.817654

    17. Gonzalo, R., B. Martinez, P. J. I. de Maagt, and M. Sorolla, "Improved patch antenna performance by usingphotonic band-gap substrates," Microwave and Optical Technology Letters, Vol. 24, No. 4, 213-215, 2000.
    doi:10.1002/(SICI)1098-2760(20000220)24:4<213::AID-MOP1>3.0.CO;2-2

    18. Meade, R. D., A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Nature of photonic band gap: some insights from a field analysis," J. Opt. Soc. Am. B, Vol. 10, No. 2, 1993.

    19. Baba, T. and T. Matsuzaky, "Theoretical calculation of photonic gap in semiconductor 2-dimensional photonic crystals with various shapes of optical atoms," J. Appl. Phys., Vol. 34, No. 8, 4496-4498, 1995.

    20. Casagne, D., C. Jouanin, and D. Bertho, "Hexagonal photonicband- gap structures," Physical Review B, Vol. 53, No. 11, 7134-7142, 1996.
    doi:10.1103/PhysRevB.53.7134

    21. Johnson, S. G., S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Physical Review B, Vol. 60, No. 8, 5751-5758, 1999.
    doi:10.1103/PhysRevB.60.5751

    22. Collin, R. E., Field Theory of Guided Waves, Second Edition, IEEE Press, 1999.

    23. Coccioli, R., F. Yang, K. Ma, and T. Itoh, "Aperture-coupled patch antenna on UC-PBG substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 1999.
    doi:10.1109/22.798008

    24. James, J. R. and A. Henderson, "High-frequency behaviour of microstrip open-circuit terminations," IEE J. Microwaves, Vol. 3, 205-218, 1979.

    25., http://www.rogers-corp.com/mwu/translations/prod.htm.