Vol. 41

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Analysis and Applications of Uniplanar Compact Photonic Bandgap Structures

By
Progress In Electromagnetics Research, Vol. 41, 211-235, 2003
doi:10.2528/PIER02010890

Abstract

This paper reviews recent advancements in the research and development of Uniplanar Compact Photonic Bandgap (UCPBG) structures for microwave and millimeter-wave applications. These planar periodic structures are particularly attractive and have been intensively investigated due to their easy fabrication, low cost, and compatibility with standard planar circuit technology. In this paper, basic properties of UC-PBG will be studied such as the slowwave effect, distinct stopband and passband, leakage suppression of surface waves, and realization of a magnetic surface. Owing to the different features of UC-PBG, these structures have been applied to microwave circuits to improve microstrip filters and patch antennas, to perform harmonic tuning in power amplifiers, to suppress leakage in conductor-backed coplanar waveguide, to realize TEM waveguides, and to implement low-profile cavity-backed slot antennas.

Citation

 (See works that cites this article)
, "Analysis and Applications of Uniplanar Compact Photonic Bandgap Structures," Progress In Electromagnetics Research, Vol. 41, 211-235, 2003.
doi:10.2528/PIER02010890
http://jpier.org/PIER/pier.php?paper=02010890

References


    1. Yablonovitch, E., "Photonic band-gap structures," J. Optical Soc. America B, Vol. 10, No. 2, 283-295, 1993.

    2. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, "Electromagnetic modeling for microwave imaging of cylindrical buried inhomogeneities," Photonic Crystals, 1995.

    3. Sievenpiper, D. F., M. E. Sickmiller, and E. Yablonovitch, "3D wire mesh photonic crystals," Phys. Rev. Lett., Vol. 76, No. 4, 2480-2483, 1996.
    doi:10.1103/PhysRevLett.76.2480

    4. Shumpert, J., T. Ellis, G. Rebeiz, and L. Katehi, "Microwave and millimeter wave propagation in photonic band-gap structures," AP-S/URSI, 1997.

    5. Qian, Y., V. Radisic, and T. Itoh, "Simulation and experiment of photonic band-gap structures for microstrip circuits," Asia-Pacific Microwave Conf. (APMC'97) Dig., 2-5, 1997.

    6. Brown, E. R., C. D. Parker, and E. Yablonovitch, "Radiation properties of a planar antenna on a photonic-crystal substrate," J. Optical Soc. America B, Vol. 10, No. 2, 404-407, 1993.

    7. Sigalas, M. M., R. Biswas, and K. M. Ho, "Theoretical study of dipole antennas on photonic band-gap materials," Microwave Opt. Technol. Lett., Vol. 13, No. 11, 205-209, 1996.
    doi:10.1002/(SICI)1098-2760(199611)13:4<205::AID-MOP9>3.0.CO;2-Q

    8. Yang, H. Y. D., N. G. Alexopoulos, and E. Yablonovitch, "Photonic band-gap materials for high-gain printed circuit an tennas," IEEE Trans. Antenna Propagat., Vol. 45, No. 1, 185-187, 1997.
    doi:10.1109/8.554261

    9. Meade, R. D., K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Photonic bound states in periodic dielectric materials," Phys. Rev. B., Vol. 44, No. 12, 13772-13774, 1991.
    doi:10.1103/PhysRevB.44.13772

    10. Gauthier, G. P., A. Courtay, and G. M. Rebeiz, "Microstrip antennas on synthesized low dielectric constant substrates," IEEE Trans. Antennas and Propagation, Vol. 45, No. 8, 1310-1314, 1997.
    doi:10.1109/8.611252

    11. Smith, G. S., M. P. Kesler, and J. G. Maloney, "Dipole antennas used with all-dielectric, woodpile photonic-bandgap reflectors: gain, field patterns, and input impedance," Microwave and Optical Technology Letters, Vol. 21, No. 3, 191-196, 1999.
    doi:10.1002/(SICI)1098-2760(19990505)21:3<191::AID-MOP10>3.0.CO;2-L

    12. Brown, E. R. and O. B. McMahon, "Large electromagnetic stop bands in metallodielectric photonic crystals," Applied Physics Letters, Vol. 67, No. 15, 2138-2140, 1995.
    doi:10.1063/1.114745

    13. Fan, S., P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Physical Review B (Condensed Matter), Vol. 54, No. 16, 11245-11251, 1996.

    14. Sievenpiper, D., E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands," Physical Review Letters, Vol. 80, No. 13, 2829-2832, 1998.
    doi:10.1103/PhysRevLett.80.2829

    15. Sievenpiper, D. and E. Yablonovitch, "Eliminating surface currents with metallodielectric photonic crystals," IEEE MTT-S Symp. Dig., 7-12, 1998.

    16. Qian, Y., D. Sievenpiper, V. Radisic, E. Yablonovitch, and T. Itoh, "A novel approach for gain and bandwidth enhancement of patch antennas," IEEE RAWCON. Symp. Dig., 9-12, 1998.

    17. Qian, Y., F. R. Yang, and T. Itoh, "Characteristics of microstrip lines on a uniplanar compact PBG ground plane," Asia-Pacific Microwave Conf. (APMC'98) Dig., No. 12, 589-592, 1998.

    18. Yang, F. R., Y. Qian, R. Coccioli, and T. Itoh, "A novel low loss slow-wave microstrip structure," IEEE Microwave Guided Wave Lett., Vol. 8, No. 11, 372-374, 1998.
    doi:10.1109/75.736247

    19. Kwon, Y. R., V. M. Hietala, and K. S. Champlin, "Quasi-TEM analysis of 'slow-wave' mode propagation on coplanar microstructure MIStransmission lines," IEEE Trans. Microwave Theory Tech., Vol. MTT-35, No. 6, 545-551, 1987.

    20. Yang, F. R., Y. Qian, and T. Itoh, "A novel compact microstrip bandpass filter with intrinsic spurious suppression," Asia-Pacific Microwave Conf. (APMC'98) Dig., No. 12, 593-596, 1998.

    21. Yang, F. R., Y. Qian, and T. Itoh, "A novel uniplanar compact PBG structure for filter and mixer applications," IEEE MTT-S Int. Microwave Conf., 13-19, 1999.

    22. Yang, F. R., K. P. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 8, 1509-1514, 1999.
    doi:10.1109/22.780402

    23. Yang, F. R., R. Coccioli, Y. Qian, and T. Itoh, "Analysis and application of coupled microstrips on periodically patterned ground plane," IEEE MTT-S Int'l Symp., Vol. 3, No. 6, 1529-1532, 2000.

    24. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, 1980.

    25. Lane, J. R., R. G. Freitag, H.-K. Hahn, J. E. Degenford, and M. Cohn, "High-efficiency 1-,2-, and 4-W class B FET power amplifiers," IEEE Trans. Microwave Theory Tech., Vol. 34, No. 12, 1318-1325, 1986.
    doi:10.1109/TMTT.1986.1133543

    26. Duvanaud, C., S. Dietsche, G. Pataut, and J. Obregon, "Highefficiency class F GaAs FET amplifier operating with very low bias voltage for use in mobile telephone at 1.75 GHz," IEEE Microwave Guided Wave Lett., Vol. 3, No. 8, 268-270, 1993.
    doi:10.1109/75.242219

    27. Hang, C., V. Radisic, Y. Qian, and T. Itoh, "High efficiency power amplifier with novel PBG ground plane for harmonic tuning," Microwave Symp. Dig., 13-19, 1999.

    28. Gupta, K. C., R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, Artech House, 1996.

    29. Shigesawa, H., M. Tsuji, and A. A. Oliner, "Conductor-backed slot line and coplanar waveguide: dangers and full-wave analyses," IEEE MTT-S Int. Microwave Symp. Dig., 25-27, 1988.

    30. Yu, M., R. Vahldieck, and J. Huang, "Comparing coax launcher and wafer probe excitation for 10 mil conductor backed CPW with via holes and airbridges," IEEE MTT-S Int. Microwave Symp. Dig., 14-18, 1993.

    31. Ma, K. P., F. R. Yang, Y. Qian, and T. Itoh, "Nonleaky conductor-backed CPW using a novel 2-D PBG lattice," Asia Pacific Microwave Conf. (APMC'98) Dig., No. 12, 509-512, 1998.

    32. Yang, F. R., R. Coccioli, Y. Qian, and T. Itoh, PBG assisted gain enhancement of patch antennas on high-dielectric constant substrate, IEEE AP-S International Symposium, No. 6, 1920-1923, 1999.

    33. Coccioli, R., F. R. Yang, K. P. Ma, and T. Itoh, "Aperture coupled patch antenna on UC-PBG substrate," IEEE Trans. Microwave Theory Tech, Vol. 47, No. 11, 2123-2130, 1999.
    doi:10.1109/22.798008

    34. Hashemi-Yeganeh, S. and C. Birtcher, "Theoretical and experimental studies of cavity-backed slot antenna excited by a narrow strip," IEEE Trans. Antennas and Propagat., Vol. 41, No. 2, 236-241, 1993.
    doi:10.1109/8.214618

    35. Ma, K. P., K. Hirose, F. R. Yang, Y. Qian, and T. Itoh, "Realization of magnetic conducting surface using novel photonic bandgap structure," Electronic Lett., Vol. 34, No. 21, 2041-2042, 1998.
    doi:10.1049/el:19981391

    36. Yang, F. R., K. P. Ma, Y. Qian, and T. Itoh, "A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2092-2098, 1999.
    doi:10.1109/22.798004

    37. Yoshimura, Y., "A microstripline slot antenna," IEEE Trans. Microwave Theory Tech., No. 11, 760-762, 1972.
    doi:10.1109/TMTT.1972.1127868

    38. Yang, F., Y. Qian, and T. Itoh, "Low-profile cavity-backed slot antenna using UC-PBG substrate," IEEE AP-S Int'l Symp., Vol. 3, No. 7, 1796-1799, 2000.