Vol. 36
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Self-Field ac Power Dissipation in High-Tc Superconducting Tapes and a Prototype Cable
By
, Vol. 36, 81-100, 2002
Abstract
The measured self-field AC power dissipation in superconducting BiSrCaCuO-2223/Ag tapes and a prototype cable is cable is compared with theoretical models. A brief overview of the theoretical background for AC loss calculations in superconductor tapes with different geometrical shapes is also discussed. New models for the harmonic components of the fundamental frequency and the current dependent non-linear inductance are also derived. It is shown that the latter models can be used to estimate current distribution and the variation of flux penetration in superconducting tapes. Two separate experimental apparatus were designed and constructed for measurements on tapes and prototype cable systems. The observed losses in tapes are reasonably well described by models based on the Critical State Model (CSM). In contrast, the measured losses in the prototype cable are found to be a factor of approximately two higher the predicted values. Further investigations showed that this may be due to inhomogeneous contact resistance between individual tapes and the current joints and the variation in critical current density (JC) distribution between tapes. The significance of current dependence of the loss component, inductive quadrature component, phase error in measurements and the definition of the critical current in the prototype cable are also discussed.
Citation
S. A. Awan, and S. Sali, "Self-Field ac Power Dissipation in High-Tc Superconducting Tapes and a Prototype Cable," , Vol. 36, 81-100, 2002.
doi:10.2528/PIER01060602
References

1. Leghissa, M., B. Fischer, B. Roas, et al. "Bi-2223 multifilament tapes and multistrand conductors for HTS power transmission cables," IEEE Trans. Appl. Supercond., Vol. 7, No. 2, 355-358, 1997.
doi:10.1109/77.614502

2. Campbell, A. M., "AC losses in high TC superconductors," IEEE Trans. Appl. Supercond., Vol. 5, No. 2, 682-687, 1995.
doi:10.1109/77.402640

3. Pe, T., J. McDonald, and J. R. Clem, "Voltage-probe-position dependence and magnetic-flux contribution to the measured voltage in ac transport measurements: which measuring circuit determines the real losses?," Proc. First Polish-U.S. Conf. High- Tc Supercond., Springer-Verlag, 1995.

4. Yang, Y., T. Hughes, C. Beduz, et al. "The influence of geometry on self-field AC losses of Ag sheathed PbBi2223 tapes," Physica C, Vol. 256, 378-386, 1996.
doi:10.1016/0921-4534(95)00662-1

5. Ciszek, M., S. P. Ashworth, M. P. James, et al. "Self-field AC losses and critical currents in multitube Ag-Bi-2223 conductors," Supercond. Sci. Technol., Vol. 9, 379-384, 1996.
doi:10.1088/0953-2048/9/5/008

6. Mele, R., G. Crotti, L. Gherardi, et al. "Analysis of AC loss behavior in BSCCO tapes with different core geometries," IEEE Trans. Appl. Supercond., Vol. 7, No. 2, 1351-1354, 1997.
doi:10.1109/77.620820

7. Mukoyama, S., K. Miyoshi, H. Tsubouti, et al. "50 in long high-TC superconductor for power cables," IEEE Trans. Appl. Supercond., Vol. 7, No. 2, 1069-1072, 1997.
doi:10.1109/77.614709

8. Gannon, J. J. Jr., A. P. Malozemoff, M. J. Minot, et al. "AC losses in Bi-2223 composite tapes," Adv. Cryogen. Eng., Vol. 40, 45-52, Plenum, New York, 1994.

9. Fujikami, J., N. Shibuta, K. Sato, et al. "Effective reduction of AC loss in HTSC cable conductor," Adv. Supercond. VII, 1195-1198, Springer-Verlag, Tokyo, 1995.

10. Norris, W. T., "Calculation of hysteresis losses in hard superconductors carrying ac: isolated conductors and edges of thin sheets," J. Phys. D, Vol. 3, 489-507, 1970.
doi:10.1088/0022-3727/3/4/308

11. Awan, S. A., "Self-field AC losses in high-TC superconducting BSCCO-2223/Ag tapes and prototype conductors,", Ph.D. thesis, University of Newcastle upon Tyne, UK, April 1997.

12. Awan, S. A., S. Sail, C. M. Friend, and T. P. Beales, "Transport AC losses and nonlinear inductance in high temperature superconductors," IEE Elec. Lett., Vol. 32, 1518-1519, 1996.
doi:10.1049/el:19960978

13. Awan, S. A., S. Sail, C. M. Friend, and T. P. Beales, "Study of self-field AC losses in mono and multi-filament Bi-2223 tapes for power applications," IEEE Trans. Appl. Supercond, Vol. 7, No. 2, 335-338, 1997.
doi:10.1109/77.614498

14. Brandt, E. H. and M. Indenbom, "Type-II-superconductor strip with current in a perpendicular magnetic field," Phys. Rev. B, Vol. 48, No. 17, 12893-12906, 1993.
doi:10.1103/PhysRevB.48.12893

15. Zeldov, E., J. R. Clem, M. McElfresh, and M. Darwin, "Magnetization and transport current in thin superconducting films," Phys. Rev. B, Vol. 49, No. 14, 9802-9822, 1994.
doi:10.1103/PhysRevB.49.9802

16. Awan, S. A., S. Sail, C. M. Friend, and T. P. Beales, "Self-field a.c. losses in mono- and multi-filamentary Bi-2223/Ag tapes at power frequencies," Cryogenics, Vol. 37, No. 10, 32-37, 1997.
doi:10.1016/S0011-2275(97)00043-X

17. Wilson, M. N., Superconducting Magnets, Oxford Press, 1989.

18. Forsyth, E. B., "Energy loss mechanisms of superconductors used in alternating-current power transmission systems," Science, Vol. 242, 391-399, 1988.
doi:10.1126/science.242.4877.391

19. Muller, K. H. and K. E. Leslie, "Self-field ac loss of Bi-2223 superconducting tapes," IEEE Trans. Appl. Supercond., Vol. 7, No. 2, 306-309, 1997.
doi:10.1109/77.614491

20. Vellego, G. and P. Metra, "An analysis of the transport losses measured on HTSC single-phase conductor prototypes," Supercond. Sci. Technol., Vol. 8, 476-483, 1995.
doi:10.1088/0953-2048/8/6/014