Vol. 12
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-05-28
Three-Dimensional Electromagnetic Diffraction by a Slot System with Parallel Plane Dielectric Interfaces
By
Progress In Electromagnetics Research M, Vol. 12, 205-216, 2010
Abstract
An efficient method is presented for rigorous description of three-dimensional electromagnetic diffraction fields in slot systems containing several parallel plane interfaces between dielectrics and conductors. For such structures, the method employs the representation of spatial field components in terms of two complex scalar functions. They specify two field polarizations, which reflect and refract on all parallel dielectric interfaces independently, one from the other, which essentially simplify the total solution of diffraction problem. As an example, the application of eigen-function expansions and mode-matching technique solves the specific problem of three-dimensional diffraction of a plane electromagnetic wave by a slot in a thin conducting screen located ahead of a half-infinite dielectric.
Citation
Vladimir Serdyuk, and Joseph Titovitsky, "Three-Dimensional Electromagnetic Diffraction by a Slot System with Parallel Plane Dielectric Interfaces," Progress In Electromagnetics Research M, Vol. 12, 205-216, 2010.
doi:10.2528/PIERM10041402
References

1. Baranchugov, E. A., P. M. Zatsepin, and S. A. Komarov, "Quasi-three-dimensional problem of diffraction of a planar electromagnetic wave by an impedance strip," Journ. of Communications Technology & Electronics, Vol. 43, No. 11, 1199-1203, 1998.

2. Slade, G. W. and K. J. Webb, "Computation of characteristic impedance for multiple microstrip transmission lines using a vector finite element method ," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 1, 34-40, 1992.
doi:10.1109/22.108320

3. Tsalamengas, J. L., "Scattering of arbitrarily polarized plane waves obliquely incident on infinite slots or strips in a planar-stratified medium," IEEE Trans. Antennas Propag., Vol. 46, No. 11, 1634-1640, 1998.
doi:10.1109/8.736613

4. Tsalamengas, J. L., "Direct singular integral equation methods in scattering and propagation in strip- or slot-loaded structures," IEEE Trans. Antennas Propag., Vol. 46, No. 10, 1560-1570, 1998.
doi:10.1109/8.725290

5. Janaswamy, R., "Wiener-Hopf analysis of the asymmetric slotline," Radio Sci., Vol. 25, No. 5, 699-706, 1990.
doi:10.1029/RS025i005p00699

5. Itoh, T. and R. Mittra, "Spectral-domain approach for calculating the dispersion characteristics of microstrip lines," IEEE Trans. Microwave Theory Tech., Vol. 21, No. 7, 496-499, 1973.
doi:10.1109/TMTT.1973.1128044

7. Kashyap, S. C. and M. A. Hamid, "Diffraction characteristics of a slit in a thick conducting screen," IEEE Trans. Antennas Propag., Vol. 19, No. 4, 499-507, 1971.
doi:10.1109/TAP.1971.1139961

8. Litvinenko, L. N., S. L. Prosvirnin, and V. P. Shestopalov, "Diffraction of a plane H-polarized electromagnetic wave by a slot in a conducting screen of finite thickness," Radiotechn. & Electron., Vol. 22, No. 3, 474-484, 1977 (in Russian).

9. Serdyuk, V. M., "Diffraction of a plane electromagnetic wave by a slot in a conducting screen of arbitrary thickness," Technical Physics, Vol. 50, No. 8, 1076-1083, 2005.
doi:10.1134/1.2014542

10. Rudnitsky, A. S. and V. M. Serdyuk, "Diffraction of a plane electromagnetic wave by a slot in a conducting screen of finite thickness placed in front of a half-infinite dielectric," Progress In Electromagnetics Research, Vol. 86, 277-290, 2008.
doi:10.2528/PIER08092605

11. Kim, J. H. and H. J. Eom, "Radiation from multiple annular slots on a circular cylindrical cavity," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 47-56, 2007.
doi:10.1163/156939307779391713

12. Nesterenko, M. V., V. A. Katrich, Y. M. Penkin, and S. L. Berdnik, "Analytical methods in theory of slot-hole coupling of electrodynamics volumes," Progress In Electromagnetics Research, Vol. 70, 79-174, 2007.
doi:10.2528/PIER06121203

13. Zhao, X. W., X. J. Dang, Y. Zhang, and C. H. Liang, "MLFMA analysis of waveguide arrays with narrow-wall slots," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1063-1078, 2007.

14. Al-Zoulbi, A. S., A. A. Kishk, and A. W. Glisson, "Analysis and design of a rectangular dielectric resonator antenna FED by dielectric image line through narrow slots," Progress In Electromagnetics Research, Vol. 77, 379-390, 2007.
doi:10.2528/PIER07082504

15. Veliev, E. I., M. V. Ivakhnychenko, and T. M. Ahmedov, "Fractional boundary conditions in plane wave diffraction on a strip," Progress In Electromagnetics Research, Vol. 79, 443-462, 2008.
doi:10.2528/PIER07102406

16. Imran, A., Q. A. Naqvi, and K. Hongo, "Diffraction of electromagnetic plane wave from a slit in PEMC plane," Progress In Electromagnetics Research M, Vol. 8, 67-77, 2009.
doi:10.2528/PIERM09042207

17. Born, M. and E. Wolf, "Principles of Optics," Pergamon, Oxford, 1969.

18. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.

19. Jones, D. S., "Acoustic and Electromagnetic Waves," Clarendon Press, Oxford, 1989.

20. Mittra, R. and S. W. Lee, Analytical Techniques in the Theory of Guided Waves, Macmillan, New York, 1971.

21. Weinstein, L. A., "The Theory of Diffraction and the Factorization Method," Golem, Boulder, 1969.

22. Kantorovich, L. V. and V. I. Krylov, Approximate Methods of Higher Analysis, Wiley, New York, 1964.