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A Low Complexity Direction of Arrival Estimation Algorithm by
Reinvestigating the Sparse Structure of Uniform Linear Arrays

Fenggang Sun1, 2, Peng Lan1, *, Bin Gao2, and Lizhen Chen1

Abstract—In this paper, we present a new computationally efficient method for direction-of-arrival
(DOA) estimation in uniform linear arrays (ULAs). A sparse uniform linear array (SULA) structure is
firstly extracted from the conventional ULA to exploit its advantage in high resolution. By performing
the multiple signal classification (MUSIC), the noise subspace of the SULA is simultaneously orthogonal
to the steering vectors corresponding to the true DOAs and several virtual DOAs, where all the true
and virtual DOAs for each source are uniformly distributed in the sine domain. Then we divide the
total angular field into several small sectors and search over an arbitrary sector. Finally, the true DOAs
can be distinguished by the noise subspace of the original ULA. Since the proposed method involves
a limited spectral search and a reduced-dimension noise subspace, hence it is quite computationally
efficient. Simulation results are provided to verify the effectiveness of the proposed method in terms of
computational complexity, estimation accuracy, and resolution performance.

1. INTRODUCTION

In array signal processing, direction-of-arrival (DOA) estimation is of practical interest in radar, sonar,
wireless communications and other applications [1, 2]. Over the past decades, various methods have
been developed to estimate DOAs, including Capon [3], multiple signal classification (MUSIC) [4], root-
MUSIC [5], and estimation of signal parameters via rotational invariance techniques (ESPRIT) [6].
Among these methods, the MUSIC method can offer a reasonable resolution and can be easily applied
in arbitrary array without dependence on array configuration. Therefore it is regarded as one of the
most popular techniques. However, since the MUSIC method involves a computationally demanding
burden, its utilization can be prohibitively expensive especially when real-time processing is required.

For the conventional MUSIC method, the computational complexity is mainly caused by two steps,
i.e., subspace decomposition and spectral search. Efficient methods have been proposed to reduce the
complexity of subspace decomposition [7, 8]. The fast subspace decomposition (FSD) technique in [7] can
reduce the computation to O(M2K), where M and K are the numbers of sensor elements and sources,
respectively. In [8], a novel real-valued MUSIC estimator with only real-valued subspace decomposition
is proposed, where it can reduce about 75% computational burden as compared to its complex-valued
version. Notice that the spectral search step requires a fine grid, i.e., the number of spectral search
points J satisfies that J � M > K. In general, the computational burden of spectral search is much
heavier than that of subspace decomposition. To this end, various methods [9, 10] have been proposed
to avoid the spectral search step or limit the search range. The root-MUSIC [9] exploits the polynomial
rooting to avoid the spectral search. The compressed MUSIC in [10] generates a noise-like subspace
cluster, whose intersection is simultaneously orthogonal to the steering vectors of the true DOAs and
multiple virtual DOAs. Based on the relation, the search range is limited to a small sector. However,
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almost all the mentioned methods are based on the traditional linear array with inter-element spacing
half-wavelength, ignoring the advantage of high resolution of the sparse array with large inter-element
spacing. Recently, sparse array geometry has drawn more and more attention [11]. It is shown in [12]
that with the increase of the inter-element spacing, the estimation resolution can be improved, but at
the cost of phase ambiguity. Then the sparse structure of co-prime array is proposed in [13–18] to
overcome the problem. In addition, the co-prime structure can enhance the degree of freedom, where
with fewer elements, the co-prime array can detect more sources. In [19], a sparse representation of
array covariance vectors based DOA estimation method is proposed.

In this paper, a computationally efficient DOA estimation method is proposed by exploiting the
advantage of the sparse structure of uniform linear arrays (ULAs). We first extract a sparse uniform
linear array (SULA) from the ULA. Then by applying the MUSIC algorithm, the spatial spectrum
of the SULA is obtained, where true DOAs together with multiple virtual DOAs can be obtained
by spectral search. According to the linear relation among the true DOAs and virtual DOAs in the
sine domain, we just search over a limited sector to obtain an arbitrary DOA for each source and
then recover all the others without spectral search. Finally, according to the orthogonality between the
steering vectors associated with true DOAs and the noise subspace of the original ULA, we can uniquely
estimate the DOAs with phase ambiguity being eliminated. Since the proposed method involves a
subspace decomposition of a small output covariance matrix of the SULA and a limited spectral search,
it is quite computationally efficient. Some existing works have also considered the phase ambiguity
problem [20, 21]. Different from our works, Reference [20] studied the ambiguity problem for non-
uniform sparse linear arrays, where the relation among true and virtual DOAs is hard to obtain and
utilize. Reference [21] considered the two dimensional case for two-parallel-shape-arrays, which cannot
be utilized in the considered one dimensional case.

To be more specific, we list the main contributions of this paper as follows.

• A sparse structure of SULA is firstly extracted from the conventional ULA. The sparse structure
enables to provide improved resolution performance with the same number of sensor elements.

• For the uniform sparse structure, multiple virtual angles are generated for each true DOA due
to the large aperture. We give a detailed analysis to verify that all the virtual angles for each
source are uniformly distributed in the sine domain. Then we propose a computationally efficient
estimation method by limiting the searching range into a small sector, which substantially simplifies
the spectral search.

• To eliminate the problem of phase ambiguity, we use the orthogonality property among steering
vectors of true DOAs and the noise subspace of the original ULA.

• As compared to the standard MUSIC approach, the proposed method has a dimension-reduced
noise subspace and a limited searching range, hence it is of significantly lower complexity. This
advantage is particularly attractive especially when real-time processing is required.

The remainder of this paper is organized as follows. Section 2 introduces the system model and
the MUSIC algorithm. Section 3 elaborates the structure model of the SULA array and its property, in
which the proposed estimation method is introduced. Section 4 analyzes the computational complexity.
Section 5 presents the simulation results. Section 6 gives the final conclusions.

2. SIGNAL MODEL AND STANDARD MUSIC METHOD

2.1. Signal Model

Suppose K uncorrelated narrowband sources with DOAs {θ1, θ2, . . . , θK} simultaneously impinging on
a ULA with M(K < M ) sensor elements. The inter-element spacing d is set to λ/2, where λ is the
wavelength. The arrays are positioned at P = {md|0 ≤ m ≤M − 1}. The array output vector at
snapshot t can be modeled as [4, 5, 22]

x (t) = A (θ) s (t) + n (t) (1)

where s(t) is the K×1 vector of signal waveforms, n(t) the M×1 additive white Gaussian noise (AWGN)
vector, and A(θ)=[a(θ1),a(θ2), . . . ,a(θK)] the M × K signal steering matrix. a(θk)(k = 1, 2, . . . ,K)
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denotes the M × 1 steering vector for the kth source and is expressed as

a (θk) =
[
1, e−j 2π

λ
d sin(θk), . . . , e−j 2π

λ
(M−1)d sin(θk)

]T
=

[
1, e−jπ sin(θk), . . . , e−j(M−1)π sin(θk)

]T
(2)

where (·)T stands for the transpose and j =
√−1.

The M × M array covariance matrix of the array output vector can be written as

Rx=E
{
x(t)xH(t)

}
= ARSAH + σ2

nIM (3)

where Rs=E{s(t)sH (t)} = diag([σ2
1 , . . . , σ2

K ]) is the source covariance matrix, with σ2
k denoting the

input signal power of the kth source. σ2
n is the sensor noise power, IM the M ×M identity matrix, and

E(·) and (·)H denote the statistical expectation and the Hermitian transpose, respectively.
The eigenvalue decomposition (EVD) of Rx can be written as

Rx = EsΛsEH
s + EnΛnEH

n (4)

where Es and En are the signal- and noise-subspace matrices, respectively. In practical situations, the
exact array covariance matrix is unavailable and its sample estimate

Rx,e =
1
T

T∑
t=1

x(t)xH(t) (5)

is used. Then the EVD of Rx,e is

Rx,e = Es,eΛs,eEH
s,e + En,eΛn,eEH

n,e (6)

where Es,e and En,e are the estimated signal- and noise-subspace matrices, respectively.

2.2. Standard MUSIC Method

In MUSIC method, DOAs are estimated by finding the maxima of its spatial spectrum [4, 5, 8, 10], i.e.,

max
θ

fMUSIC (θ) = 1
aH(θ)En,eEH

n,ea(θ)
= 1

‖EH
n,ea(θ)‖2

s.t. θ ∈ [−π
2 , π

2

] (7)

where ‖ · ‖ is the vector 2-norm. The MUSIC method involves the spectral search of the total angular
field and is computationally prohibitive as a result. Traditionally, the complexity of spectral search is
typically substantially higher than that of the EVD, since the total number of spectral points J � M .

3. THE PROPOSED DOA ESTIMATION METHOD

The standard MUSIC method suffers from a tremendous spectral search over the total angular field-
of-view; hence it is prohibitively expensive when real-time processing is required. In this paper, we
consider a sparse structure of ULA to reduce the complexity while maintain the estimation accuracy.

3.1. Sparse Uniform Linear Array (SULA)

For ULAs, inter-element spacing is fixed as half-wavelength. The purpose is to avoid the problem of
phase ambiguity, but at the cost of sacrificing the potential of higher resolution [12]. Let us investigate
the influence of different inter-element spacings. Fig. 1 depicts the normalized MUSIC spectrum of
ULA for one source with different inter-element spacings, where M = 4, θ = 30◦, SNR = 0dB, and the
inter-element spacing d is set as λ/2, 3λ/2, and 5λ/2, respectively. As is shown, when d = λ/2, the
spectrum has only one but wide peak, i.e., no ambiguity but with low resolution. As d increases, more
sharper peaks can be observed, i.e., estimation resolution is enchanted. However, except for the peak
at the true DOA, multiple virtual peaks are also generated, i.e., the problem of phase ambiguity arises.

Since sparse array with larger inter-element spacing can provide a higher resolution, we
consider to extract the SULAs from the conventional half-wavelength ULA. Let’s uniformly extract
Ms(2 ≤ Ms ≤ �M/2�) elements to construct a SULA, where �·� denotes the round up to the nearest
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integer operation. The inter-element spacing d = βsλ
2 , and βs(> 1) is an integer. According to the

limitation in ULA, (Ms − 1)βsλ
2 ≤ (M − 1)λ

2 such that the size of the SULA is no bigger than that of
the original ULA. Therefore, the maximum value βs with respect to Ms is given by

βmax
s =

⌊
M − 1
Ms − 1

⌋
(8)

where 	·
 stands for the round down to the nearest integer operation.
For the SULA, the steering vector for the kth source can be similarly given as

as (θk) =
[
1, e−jβmax

s π sin(θk), . . . , e−j(Ms−1)βmax
s π sin(θk)

]T
(9)

Then the sample estimate of array covariance matrix Rx,s=E
{
xs(t)xH

s (t)
}

is given by

Rx,s,e =
1
T

T∑
t=1

xs(t)xH
s (t) (10)

where xs(t) is the received signal and the EVD of Rx,s,e is

Rx,s,e = Es,s,eΛs,s,eEH
s,s,e + En,s,eΛn,s,eEH

n,s,e (11)

where Es,s,e and En,s,e are the estimated signal- and noise- subspace matrices, respectively.

3.2. Relation Among True and Virtual DOAs

For the Ms-element SULA with d = βmax
s λ
2 , there exist multiple peaks for each source DOA in the

MUSIC spectrum, as shown in Fig. 1. Assume θv,k denotes one of the virtual DOAs with respect to
the true DOA θk. Since both θk and θv,k generate the same peaks in the MUSIC spectrum, they must
satisfy that 2π

λ d sin θk − 2π
λ d sin θv,k = 2nπ, i.e.,

sin θk − sin θv,k =
2n

βmax
s

(12)

where n is an integer [12, 14]. When d ≤ λ
2 , there is no virtual DOA that satisfies Equation (12).

Therefore, there exists only one peak for each DOA. However, when d > λ
2 , multiple peaks will be

generated, among which only one is the estimation of true DOA. In the sine domain, the true value
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Figure 1. Normalized MUSIC spectrum in
angle domain with d = λ/2, 3λ/2, and 5λ/2,
respectively.
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sin θk and virtual value sin θv,k have the difference of n× 2
βmax

s
. According to −1 ≤ sin θ ≤ 1, there exists

at most βmax
s virtual peaks.

In the sine domain, all the peaks for each DOA are uniformly distributed, which is illustrated in
Fig. 2. According to the linear relation, we can recover all the peaks if an arbitrary one is acquired.
Based on the property, we study the DOA estimation by utilizing the sparse structure and the linear
relation among true DOA and virtual DOAs.

3.3. The Proposed Estimation Method

According to the relation in Equation (12), we equally divide the total field-of-view in sine domain into
βmax

s small sectors φn, n = 1, 2, . . . , βmax
s , i.e.,

φn=
[
−1+

2 (n − 1)
βmax

s

,−1+
2n

βmax
s

]
(13)

The length of each sector is 2
βmax

s
. It can be seen clearly from Equation (12) that for each true DOA θk,

there exists one spectral peak in each sector simultaneously, i.e., one true DOA and βmax
s − 1 virtual

DOAs. The virtual DOAs together with the true DOA are uniformly distributed in the sine domain.
Therefore, we can search over an arbitrary sector φn, n = 1, 2, . . . , βmax

s to find the K (true or
virtual) peaks for all the sources in the sine domain, denoted as

Pest
s,n =

[
sin θest

1,n, sin θest
2,n, . . . , sin θest

K,n

]
(14)

According to Equation (12), the peaks in other sectors can be recovered without spectral search.
Specially, the peaks in φm, m = 1, 2, . . . , βmax

s can be recovered as

Pest
s,m = Pest

s,n + (m − n)
2

βmax
s

(15)

Then we have all the virtual (and true) peaks, which is denoted as Pest
s = [Pest

s,1 ,P
est
s,2 , . . . ,P

est
s,βmax

s
].

Since the phase ambiguity problem is caused by the large inter-element spacing, it cannot be
eliminated by the SULA itself. Note that the steering vector a(θ) of the original ULA is orthogonal
to the original noise-subspace En,e only at true DOAs and non-orthogonal at the virtual DOAs.
Therefore, we can select the K true DOAs among Kβmax

s virtual values vector Pest
s by finding the

maximum peaks of 1/‖EH
n,ea(θ)‖2. The positions of the selected peaks in sine domain is denoted as

Pest
s,sel = [pest

1 , pest
2 , . . . , pest

K ], where pest
i ∈ Pest

s , i = 1, 2, . . . ,K.
Finally, the true DOAs can be estimated by

θest
i = arcsin pest

i , i = 1, 2, . . . ,K (16)

Instead of searching over the total angular field-of-view, the proposed method involves a limited
spectral search over a small sector. Then the other virtual (or true) DOAs can be computed immediately
without spectral search. Therefore, the proposed method is quite computationally efficient.

Remark 1 : In the considered sparse model, to apply the MUSIC algorithm in Ms-element SULA, at
least one eigenvector from the EVD of the covariance matrix is left to span the related noise subspace,
thus the number of sources can be detectable is Ms−1, while the M -element ULA can detect up to
M − 1 sources. Therefore the maximum number of detectable sources is reduced; however, it is to be
shown that this reduction can lead to a much lower computation complexity and a better estimation
accuracy and complexity tradeoff as compared to the standard MUSIC.

4. COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity of the proposed method and compare it with
that of the standard MUSIC as well as the compressed MUSIC (C-MUSIC) in [10].

For the proposed method, it has to compute ‖EH
n,s,eas(θ)‖2 for each spectral point. Note that the

dimension of En,s,e is Ms × (Ms − K) and the proposed method involves a limited search over only one
small sector with J/βmax

s points. The complexity of spectral search is given by JMs(Ms − K)/βmax
s
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flops. The EVD step of Rx,s,e needs M2
s (K + 2) flops [7]. Moreover, the proposed method requires an

additional check step for K × βmax
s virtual DOAs and it has to compute ‖EH

n,ea(θ)‖2 for each virtual
DOA. The check step requires Kβmax

s M(M − K) flops. Therefore, the total computational complexity
of the proposed method is given by

Cproposed = JMs (Ms − K)/βmax
s + M2

s (K + 2) + Kβmax
s M (M − K) (17)

For the standard MUSIC, it has to compute ‖EH
n,ea(θ)‖2 for each spectral point. Hence, the spectral

step needs JM(M − K) flops. The computational complexity is given as

CMUSIC = JM (M − K) + M2 (K + 2) (18)

For C-MUSIC, JM(M − βmax
s K)/βmax

s flops are required by the spectral search step and M2
s (K+2)

flops are required for FSD. Additionally, it needs a SVD step for a M × M matrix, which requires
M2(βmax

s K + 2) flops. Therefore, the computational complexity is given by

CC-MUSIC = M2 (K + 2) + M2 (βmax
s K + 2) + JM (M − βmax

s K)/βmax
s (19)

For the sake of clarity, the computational complexities of all the above methods are summarized
in Table 1. It can be easily seen that the complexity of the proposed method is significantly lower than
that of other methods.

Table 1. Comparison of computational complexity.

Proposed Method JMs (Ms − K)/βmax
s + M2

s (K + 2) + Kβmax
s M (M − K)

C-MUSIC M2 (K + 2) + M2 (βmax
s K + 2) + JM (M − βmax

s K)/βmax
s

MUSIC JM (M − K) + M2 (K + 2)

For spectral search step 0.01◦, the number of search points is J = 180◦/0.01◦ = 1.8 × 104. When
M = 13, Ms = 7, βmax

s = 	 M−1
Ms−1
 = 2, and the inter-element spacing d = βmax

s λ
2 = λ, the complexities of

the standard MUSIC and C-MUSIC are computed as 2.57× 106 and 1.05× 106 flops, respectively. The
complexity of the proposed method is 3.16 × 105 flops. Hence, the complexity of the proposed method
is about 12.3% of that of the standard MUSIC and is about 29.9% of that of the C-MUSIC method.
Obviously, regarding the implementation, our proposed method is significantly of lower complexity than
other methods. Fig. 3 shows the computational complexity versus for the three methods. We can see
that the complexity of the proposed method is much lower than that of other methods.

5. SIMULATION RESULTS

In this section, we compare the performance of the proposed method via simulations with that of other
methods, including MUSIC, C-MUSIC, and Minimum Norm (MN) [23]. We consider a ULA with
M = 13 sensors and K = 2 independent narrowband sources. The compression times for C-MUSIC is
β=2. The searching step is set as 0.01◦. The root mean square error (RMSE), expressed as

RMSE =

√√√√ 1
QK

Q∑
q=1

K∑
k=1

(θ̂k(q) − θk)
2

is used as the performance metric, where θ̂k(q) is the estimate of θk for the qth trial, q = 1, 2, . . . , Q.
All the numerical results are obtained from Q = 1000 independent trials.
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Figure 3. The complexities of different methods versus Ms, where M = 13.

 -10  -8  -6  -4  -2 0 2 4 6 8 10

10
-3

10
-2

SNR [dB]

R
M

S
E

 [r
ad

]

Proposed,Ms=4

Proposed,Ms=5

Proposed,Ms=7

MUSIC,M =13
C-MUSIC
Minimum Norm

Figure 4. RMSEs versus the SNR with two
sources, where the snapshot number T = 200.

0 100 200 300 400 500 600 700 800 900 1000

10
-3

10
-2

Snapshot Number

R
M

S
E

 [r
ad

]

Proposed,Ms=4

Proposed,Ms=5

Proposed,Ms=7

MUSIC,M =13
C-MUSIC
Minimum Norm
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with two sources, where SNR = 0dB.

5.1. Comparison of RMSEs

In this simulation, we firstly consider K = 2 sources with their DOAs randomly generated in the range
of [10◦, 11◦] and [40◦, 41◦], respectively.

We compare the RMSEs for DOA estimation by the proposed method with those by other methods
in Fig. 4, where the SNR varies from −10 dB to 10 dB. The parameter Ms is selected approximately for
the performance comparison. It is observed that both MUSIC and C-MUSIC provide very close RMSE
performance, while the performance of the proposed method is slightly worse. However, as compared
to MN, the proposed method can improve the performance obviously. With the increase of Ms, the
differences of RMSEs among the proposed method, MUSIC, and C-MUSIC decrease dramatically. Note
that when Ms=7, the complexity of the proposed method is only about 12.3% of that of MUSIC and
about 29.9% of that of C-MUSIC. Therefore, the proposed method shows a better estimation accuracy
and complexity tradeoff as compared to other methods.

To see more clearly about the performance, Fig. 5 depicts RMSEs of different methods versus
the number of snapshots. It can be also seen that with the increase of Ms, the proposed method can
provide more similar performance as that of both MUSIC and C-MUSIC, but with substantially reduced
complexity. Also, the proposed method exhibits essentially improved performance as compared to MN.

Then we consider K = 3 sources with their DOAs randomly generated in the range of [10◦, 11◦],
[20◦, 21◦], and [40◦, 41◦], respectively. The RMSE performance of different methods with respect to
different SNRs and snapshot numbers are plotted in Fig. 6 and Fig. 7. As is shown, the proposed
method can also achieve a similar RMSE performance as compared to that of MUSIC and C-MUSIC,
especially when Ms is large.
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Figure 6. RMSEs versus the SNR with three
sources, where the snapshot number T = 200.
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SNR, where the snapshot number T = 200.
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Figure 9. Resolution probabilities versus the
snapshot number, where SNR = 15 dB.

5.2. Comparison of Resolution Probability

In this simulation, we compare the resolution probabilities of different methods in Figs. 8 and 9, where
two closely spaced sources are at the DOAs θ1 = 20◦ and θ2 = 22◦, respectively. The two sources are
said to be successfully resolved if and only if [24]

f (θ1) + f (θ2)
2

> f

(
θ1 + θ2

2

)
(20)

where f denotes the spectral value.
Figure 8 plots resolution probability versus SNR with T = 200. It is observed that the resolution

ability is enhanced for all methods with the increase of SNR. At low SNRs, the proposed method
has a higher resolution than that of MUSIC and C-MUSIC. However, when SNRs become larger,
the resolution of MUSIC and C-MUSIC begins to be better than that of the proposed method. On
the other hand, benefitting from the sparse structure, the proposed method can provide an improved
resolution probability with the decrease of Ms. Moreover, C-MUSIC and MUSIC have the similar
resolution performance and MN provides the best. However, as shown in Fig. 4, the improved resolution
probability of MN comes at the cost of higher MSEs. Overall, the proposed method achieves a reasonable
performance both in MSE and resolution probability, but with substantially reduced complexity.
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Figure 9 plots the resolution probability versus the snapshot number with SNR = 15dB. As is
shown, with the increase of T , the resolution performance of the proposed method is improved. The
resolution performance is also improved with the decrease of Ms. The resolution probability is slightly
worse than that of both MUSIC and C-MUSIC, especially when the inter-element spacing is large.

To see more clearly, we plot the resolution performance against the interval Δθ of the two sources
in Fig. 10. We set θ1 = 20◦ and θ2 = θ1 + Δθ, where Δθ varies from 0.2◦ to 3◦. The SNR is set as
15 dB and T = 200. As is shown, MN exhibits the best ability all the methods, especially when the two
sources are very close, which is at the cost of higher MSE. As compared to MUSIC and C-MUSIC, the
proposed method shows better performance when Δθ is small and worse when Δθ is large. Regarding
the complexity, the proposed method makes an efficient trade-off between complexity and resolution.
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Figure 11. Spectrum of the proposed method
and the MUSIC method, where θ1 = 20◦, θ2 =
57.35◦. The two sources generate overlapped
spatial spectrum for the SULA.

5.3. Comparison of Spatial Spectrum with Overlapped Virtual DOAs

Since multiple virtual DOAs can be generated for each true DOA, it is possible that two well-separated
sources generate the overlapped spatial spectrum for SULA. In this simulation, we fix Ms = 4 and
βmax

s = 4. We consider K = 2 sources, whose DOAs are set as θ1 = 20◦ and θ2 = 57.35◦. Since
sin θ2 − sin θ1 ≈ 0.5 = 2

βmax
s

, the two sources generate the overlapped spatial spectrum in SULA.
Figure 11 depicts the spatial spectrum for the two sources. As is shown, there are only βmax

s = 4
virtual DOAs in such scenario, i.e., one of the virtual sources of θ1 overlaps the true source θ2, and vice
versa. However, according to the fact that only the steering vectors associated with the true DOAs are
orthogonal to the noise subspace of the original ULA, the true DOAs can be uniquely estimated by
maximizing 1/‖EH

n,ea(θ)‖2. The performing results of orthogonality check is shown in Table 2. We can
see that the overlapped DOAs can be estimated successfully by the orthogonality check.

Table 2. Orthogonality check.

angle θ̂1 θ̂2 θ̂3 θ̂4

Candidate DOAs −41.15◦ −9.09◦ 20.0◦ 57.35◦

1
/∥∥EH

n,ea (θ)
∥∥2 0.0777 0.0774 24.2703 17.2445

true or virtual virtual virtual true true
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6. CONCLUSIONS

In this paper, a computationally efficient DOA estimation method is proposed for uniform linear arrays
(ULAs), which exploits the advantage of the sparse structure. For the sparse uniform linear array
extracted from the ULA, the MUSIC spectrum can generate multiple peaks at the true DOAs and
several virtual DOAs, the steering vectors of which are simultaneously orthogonal to the noise subspace
of the sparse array. Based on the relationship among true and virtual DOAs, the proposed method
involves a limited spectral search and others can be recovered without spectral search, hence it is
computationally efficient. The true DOAs can be distinguished by the original noise subspace of the
ULA. It is shown by simulation results that the proposed method has a much lower complexity at the
cost of reducing the estimation accuracy slightly. Hence the proposed method achieves a better accuracy
and complexity trade-off as compared to other existing estimation methods.
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