Vol. 47
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-12-26
Approximate Model for Universal Broadband Antireflection Nano-Structure
By
Progress In Electromagnetics Research B, Vol. 47, 127-144, 2013
Abstract
In this work we investigate the effect of broadband antireflection of a medium by a layer of embedded nano-cavities arranged near the surface. It is shown that this structure is versatile and allows near 100% transmittance in a wide spectral range practically for any dielectric material. The approximate model of nano-structured layer is suggested that allows to determine the parameters of the system necessary for achieving antireflection of any a priori given media without complicated numerical calculations. The transmission spectrum of a medium modified by such a structure is entirely defined by a radius and a depth of bedding of the nano-porous layer.
Citation
Alexander Sergeevich Shalin, and Sergey Apollonovich Nikitov, "Approximate Model for Universal Broadband Antireflection Nano-Structure," Progress In Electromagnetics Research B, Vol. 47, 127-144, 2013.
doi:10.2528/PIERB12101611
References

1. Visimax Technologies, Twinsburg, Ohio, http://visimaxtechnologies.com/anti-reflection-visiclear/.
doi:10.1126/science.283.5401.520

2. Walheim, S., E. Schaffer, J. Mlynek, and U. Steiner, "Nanophase-separated polymer films as high-performance antireflection coatings," Science, Vol. 283, 520-522, 1999.
doi:10.1088/0957-4484/8/2/002

3. Lalanne, P. and G. M. Morris, "Antireflection behavior of silicon subwavelength periodic structures for visible light," Nanotechnology, Vol. 8, 53-56, 1997.

4. Koenig, G. A. and N. G. Niejelow, United States Patent No: US 7,311,938 B2, Dec. 25, 2007.
doi:10.1039/c1ee01297e

5. Raut, H. K., V. A. Ganesh, A. S. Nairb, and S. Ramakrishna, "Anti-reflective coatings: A critical, in-depth review," Energy Environ. Sci., Vol. 4, 3779-3804, 2011.
doi:10.1063/1.122241

6. Her, T.-H., R. J. Finaly, C. Wu, S. Delivala, and E. Mazur, "Microstructuring of silicon with femtosecond laser pulses," Appl. Phys. Lett., Vol. 73, 1673-1675, 1998.
doi:10.1063/1.3075059

7. Chen, Y. W., P. Y. Han, and X.-C. Zhang, "Tunable broadband anti-reflection structures for silicon at terahertz frequency," Appl. Phys. Lett., Vol. 94, 041106, 2009.

8. Zhang, F., L. Yang, Y. Jin, and S. He, "Turn a highly-reflective metal into an omnidirectional broadband absorber by coating a purely-dielectric thin layer of grating," Progress In Electromagnetics Research, Vol. 134, 95-109, 2013.

9. Oliveira, P. W., H. Krug, A. Frantzen, M. Mennig, and H. K. Schmidt, Sol-Gel Optics IV, B. S. Dunn, J. D. Mackenzie, E. J. A. Pope, H. K. Schmidt, M. Yamane, Eds., SPIE, San Diego, CA, 1997.
doi:10.1117/12.512982

10. Pegon, P. M., C. V. Germain, Y. R. Rorato, P. F. Belleville, and E. Lavastre, "Large-area sol-gel optical coatings for the Megajoule Laser prototype," Proc. SPIE, Vol. 5250, 170-181, 2004.
doi:10.1088/0957-4484/16/7/005

11. Krogman, K. C., T. Druffel, and M. K. Sunkara, "Anti-reflective optical coatings incorporating nanoparticles," Nanotechnology, Vol. 16, No. 7, S338-S343, 2005.
doi:10.1364/OL.37.003036

12. Kajorndejnukul, V., S. Sukhov, D. Haefner, A. Dogariu, and G. Agarwal, "Surface induced anisotropy of metal-dielectric composites and the anomalous spin Hall effect," Opt. Lett., Vol. 37, 3036, 2012.

13. Xi, J.-Q., M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smar, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection ," Nature Photonics, Vol. 1, 176-179, 2007.
doi:10.1038/nphoton.2008.45

14. Garcia-Vidal, F. J., "Metamaterials: Towards the dark side," Nature Photonics, Vol. 2, 215-216, 2008.
doi:10.1002/adma.200601438

15. Wu, Z., J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, "Deformable antireflection coatings from polymer and nanoparticle multilayers," Adv. Mater., Vol. 18, 2699, 2006.
doi:10.1364/OE.17.020991

16. Song, Y. M., E. S. Choi, J. S. Yu, and Y. T. Lee, "Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures," Opt. Express, Vol. 17, 20991-20997, 2009.
doi:10.1002/adma.200802563

17. Yu, P., C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, "Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin Oxide nanocolumns," Adv. Mater., Vol. 21, 1618-1621, 2009.
doi:10.1134/S0021364010120052

18. Shalin, A. S., "Broadband blooming of a medium modified by an incorporated layer of nanocavities," JETP Lett., Vol. 91, 636-642, 2010.
doi:10.1070/QE2011v041n02ABEH014331

19. Shalin, A. S., "Optical antireflection of a medium by nanocrystal layers," Quantum Electronics, Vol. 41, No. 2, 163-169, 2011.
doi:10.1134/S1064226911010098

20. Shalin, A. S., "Optical properties of nanocrystal layers embedded in a carrier medium," Journal of Communications Technology and Electronics, Vol. 56, No. 1, 14-26, 2011.

21. Shalin, A. S., "Optical antireflection of a medium by nanostructural layers," Progress In Electromagnetic Research B, Vol. 31, 45-66, 2011.
doi:10.1364/OE.18.013063

22. Song, Y. M., H. J. Choi, J. S. Yu, and Y. T. Lee, "Design of highly transparent glasses with broadband antireflective subwavelength structures," Optics Express, Vol. 18, No. 12, 13063, 2010.
doi:10.2528/PIER97021000

23. Rother, T. and K. Schmidt, "The discretized mie-formalism for electromagnetic scattering," Progress In Electromagnetics Research, Vol. 17, 91-183, 1997.

24. Born, M. and E. Wolf, Principles of Optics, Pergamon, Oxford, 1969.
doi:10.1070/QE2008v038n06ABEH013829

25. Khlebtsov, N. G., "Optics and biophotonics of nanoparticles with a plasmon resonance," Quantum Electronics, Vol. 38, No. 6, 504-529, 2008.
doi:10.1070/QE2010v040n11ABEH014330

26. Shalin, A. S., "Microscopic theory of optical properties of composite media with chaotically distributed nanoparticles," Quantum Electronics, Vol. 40, No. 11, 1004-1011, 2010.
doi:10.1364/OL.31.000601

27. Xi, J.-Q., J. K. Kim, E. F. Schubert, D. Ye, T.-M. Lu, S.-Y. Lin, and S. Juneja Jasbir, "Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods," Opt. Lett., Vol. 31, No. 5, 601-603, 2006.