1. Born, M. and E. Wolf, Principles of Optics, Pergamon Press, 1968.
2. Rytov, S. M., "Electromagnetic properties of a finely stratified medium," Sov. Phys., Vol. 2, 466-475, 1956. Google Scholar
3. Sihvola, A., "Electromagnetic Mixing Formula and Applications," IEE Press, 1999. Google Scholar
4. Agranovich, V. M., "Dielectric permeability and influence of external fields on optical properties of superlattices," Solid State Commun., Vol. 78, 747-750, 1991.
doi:10.1016/0038-1098(91)90856-Q Google Scholar
5. Mosallaei, H. and K. Sarabandi, "Magneto-dielectrics in electromagnetics: Concept and applications," IEEE Trans. Antennas Propag., Vol. 52, 1558-1567, 2004.
doi:10.1109/TAP.2004.829413 Google Scholar
6. Kazanskiy, V. B. and V. R. Tuz, "The long-wave theory of N pairwise alternate homogeneous and heterogeneous layers diffraction," Radioelectronics and Communications Systems, Vol. 51, 16-23, 2008. Google Scholar
7. Tuz, V. and V. Kazanskiy, "Electromagnetic scattering by a quasiperiodic generalized multilayer Fibonacci structure with grates of magnetodielectric bars," Waves in Random and Complex Media, Vol. 19, No. 3, 501-508, 2009.
doi:10.1080/17455030902780445 Google Scholar
8. Prosvirnin, S. L. and S. Zouhdi, "On the effective constitutive parameters of metal-dielectric arrays of complex-shaped particles," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 5, 583-598, 2006.
doi:10.1163/156939306776137818 Google Scholar
9. Simovski, C. R., "On electromagnetic characterization and homogenization of nanostructured metamaterials," J. Opt., Vol. 13, 013001, 2011. Google Scholar
10. Wu, R. X., "Effective negative refraction index in periodic metalferrite-metal film composite," J. Appl. Phys., Vol. 97, 076105, 2005. Google Scholar
11. Tarkhanyan, R. H. and D. G. Niarchos, "Effective negative refractive index in ferromagnet-semiconductor superlattices," Opt. Express, Vol. 14, 5433-5444, 2006. Google Scholar
12. Wu, R. X., T. Zhao, and J. Q. Xiao, "Periodic ferritesemiconductor layered composite with negative index of refraction," J. Phys.: Condens. Matter., Vol. 19, 026211, 2007. Google Scholar
13. Shramkova, O. V., "Transmission spectra in ferrite-semiconductor periodic structure," Progress In Electromagnetics Research M, Vol. 7, 71-85, 2009. Google Scholar
14. Bulgakov, A. A., A. A. Girich, M. K. Khodzitsky, O. V. Shramkova, and S. I. Tarapov, "Transmission of electromagnetic waves in a magnetic fine-stratified structure," J. Opt. Soc. Am. B, Vol. 26, B156-B160, 2009. Google Scholar
15. Tarkhanyan, R. H., D. G. Niarchos, and M. Kafesaki, "Influence of external magnetic field on magnon-plasmon polaritons in negative-index antiferromagnet-semiconductor superlattices," J. Magn. Magn. Mater., Vol. 322, 603-608, 2010. Google Scholar
16. Afanas’ev, S. A., D. G. Sannikov, and D. I. Sementsov, "‘Left–handed’ state and polarization characteristics of waves in ‘semiconductor-magnet’ superlattices," Physics of the Solid State, Vol. 54, 332-337, 2012. Google Scholar
17. Girich, A. A., M. K. Khodzitsky, and S. I. Tarapov, "Experimental investigation of left-handed medium properties of semiconductorferrite composite in millimetre waveband," 3rd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, 590-592, London, UK, Aug. 30–Sep. 4, 2009. Google Scholar
18. Gurevich, A. G., Ferrites at Microwave Frequencies, Heywood, 1963.
19. Bass, F. G. and A. A. Bulgakov, Kinetic and Electrodynamic Phenomena in Classical and Quantum Semiconductor Superlattices, Nova Science, 1997.
20. Alú, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas Propag., Vol. 51, 2558-2571, 2003. Google Scholar
21. Berreman, D. W., "Optics in stratified and anisotropic media: 4x 4-matrix formulation," J. Opt. Soc. Am., Vol. 62, 502-510, 1972. Google Scholar
22. Tuz, V. R., M. Y. Vidil, and S. L. Prosvirnin, "Polarization transformations by a magneto-photonic layered structure in the vicinity of a ferromagnetic resonance," J. Opt., Vol. 12, 095102, 2010. Google Scholar
23. Wei, Y., M. Yan, and M. Qiu, "Generalized nihility media from transformation optics," J. Opt., Vol. 13, 024005, 2011. Google Scholar
24. Castaldi, G., I. Gallina, V. Galdi, A. Alú, and N. Engheta, "Transformation-optics generalization of tunnelling effects in bi-layers made of paired pseudo-epsilon-negative/mu-negative media," J. Opt., Vol. 13, 2011. Google Scholar
25. Collin, R. E., Foundation for Microwave Engineering, Wiley-Interscience, 1992.
26. Jakubovich, V. A. and V. H. Starzhinskij, Linear Differential Equations with Periodic Coefficients, Wiley, 1975.
27. Lakhtakia, A. and C. M. Krowne, "Restricted equivalence of paired epsilon-negative and mu-negative layers to a negative phase-velocity materials (alias left-handed material)," Optik, Vol. 114, 305-307, 2003. Google Scholar
28. Orfanidis, S. J., Electromagnetic Waves and Antennas, Chapter 4, Propagation in Birefringent Media, 2008, www.ece.rutgers.edu/∼orfanidi/ewa..
29. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968. Google Scholar
30. Shevchenko, V. V., "Forward and backward waves: Three definitions and their interrelation and applicability," Phys.-Usp., Vol. 50, 287, 2007. Google Scholar
31. Tretyakov, S., I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 695-706, 2003. Google Scholar
32. Qiu, C.-W., "Chiral nihility effects on energy flow in chiral materials," J. Opt. Soc. Am. A, Vol. 25, 55-63, 2008. Google Scholar
33. Tuz, V. R. and C.-W. Qiu, "Semi-infinite chiral nihility photonics: Parametric dependence, wave tunneling and rejection," Progress In Electromagnetics Research, Vol. 103, 139-152, 2010. Google Scholar
34. Shen, J. Q., "Negative refractive index in gyrotropically magnetoelectric media," Phys. Rev. B, Vol. 73, 045113, 2006. Google Scholar