Vol. 41
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-06-24
Gyrotropic-Nihility in Ferrite-Semiconductor Composite in Faraday Geometry
By
Progress In Electromagnetics Research B, Vol. 41, 397-417, 2012
Abstract
The reflection, transmission spectra and the polarization transformation of linearly polarized waves in the ferrite-semiconductor multilayer structure are considered. In the long-wavelength limit, the effective medium theory is applied to describe the studied structure as a uniaxial anisotropic homogeneous medium defined by the effective permittivity and effective permeability tensors. The investigations are carried out in the frequency band where the real parts of the diagonal elements of both the effective permittivity and permeability tensors are close to zero. In this frequency band the studied structure is referred to a gyrotropic-nihility medium. An enhancement of polarization rotation, impedance matching, backward propagation are revealed.
Citation
Vladimir Tuz, Oleg D. Batrakov, and Yu Zheng, "Gyrotropic-Nihility in Ferrite-Semiconductor Composite in Faraday Geometry," Progress In Electromagnetics Research B, Vol. 41, 397-417, 2012.
doi:10.2528/PIERB12042603
References

1. Born, M. and E. Wolf, Principles of Optics, Pergamon Press, 1968.

2. Rytov, S. M., "Electromagnetic properties of a finely stratified medium," Sov. Phys., Vol. 2, 466-475, 1956.        Google Scholar

3. Sihvola, A., "Electromagnetic Mixing Formula and Applications," IEE Press, 1999.        Google Scholar

4. Agranovich, V. M., "Dielectric permeability and influence of external fields on optical properties of superlattices," Solid State Commun., Vol. 78, 747-750, 1991.
doi:10.1016/0038-1098(91)90856-Q        Google Scholar

5. Mosallaei, H. and K. Sarabandi, "Magneto-dielectrics in electromagnetics: Concept and applications," IEEE Trans. Antennas Propag., Vol. 52, 1558-1567, 2004.
doi:10.1109/TAP.2004.829413        Google Scholar

6. Kazanskiy, V. B. and V. R. Tuz, "The long-wave theory of N pairwise alternate homogeneous and heterogeneous layers diffraction," Radioelectronics and Communications Systems, Vol. 51, 16-23, 2008.        Google Scholar

7. Tuz, V. and V. Kazanskiy, "Electromagnetic scattering by a quasiperiodic generalized multilayer Fibonacci structure with grates of magnetodielectric bars," Waves in Random and Complex Media, Vol. 19, No. 3, 501-508, 2009.
doi:10.1080/17455030902780445        Google Scholar

8. Prosvirnin, S. L. and S. Zouhdi, "On the effective constitutive parameters of metal-dielectric arrays of complex-shaped particles," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 5, 583-598, 2006.
doi:10.1163/156939306776137818        Google Scholar

9. Simovski, C. R., "On electromagnetic characterization and homogenization of nanostructured metamaterials," J. Opt., Vol. 13, 013001, 2011.        Google Scholar

10. Wu, R. X., "Effective negative refraction index in periodic metalferrite-metal film composite," J. Appl. Phys., Vol. 97, 076105, 2005.        Google Scholar

11. Tarkhanyan, R. H. and D. G. Niarchos, "Effective negative refractive index in ferromagnet-semiconductor superlattices," Opt. Express, Vol. 14, 5433-5444, 2006.        Google Scholar

12. Wu, R. X., T. Zhao, and J. Q. Xiao, "Periodic ferritesemiconductor layered composite with negative index of refraction," J. Phys.: Condens. Matter., Vol. 19, 026211, 2007.        Google Scholar

13. Shramkova, O. V., "Transmission spectra in ferrite-semiconductor periodic structure," Progress In Electromagnetics Research M, Vol. 7, 71-85, 2009.        Google Scholar

14. Bulgakov, A. A., A. A. Girich, M. K. Khodzitsky, O. V. Shramkova, and S. I. Tarapov, "Transmission of electromagnetic waves in a magnetic fine-stratified structure," J. Opt. Soc. Am. B, Vol. 26, B156-B160, 2009.        Google Scholar

15. Tarkhanyan, R. H., D. G. Niarchos, and M. Kafesaki, "Influence of external magnetic field on magnon-plasmon polaritons in negative-index antiferromagnet-semiconductor superlattices," J. Magn. Magn. Mater., Vol. 322, 603-608, 2010.        Google Scholar

16. Afanas’ev, S. A., D. G. Sannikov, and D. I. Sementsov, "‘Left–handed’ state and polarization characteristics of waves in ‘semiconductor-magnet’ superlattices," Physics of the Solid State, Vol. 54, 332-337, 2012.        Google Scholar

17. Girich, A. A., M. K. Khodzitsky, and S. I. Tarapov, "Experimental investigation of left-handed medium properties of semiconductorferrite composite in millimetre waveband," 3rd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, 590-592, London, UK, Aug. 30–Sep. 4, 2009.        Google Scholar

18. Gurevich, A. G., Ferrites at Microwave Frequencies, Heywood, 1963.

19. Bass, F. G. and A. A. Bulgakov, Kinetic and Electrodynamic Phenomena in Classical and Quantum Semiconductor Superlattices, Nova Science, 1997.

20. Alú, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas Propag., Vol. 51, 2558-2571, 2003.        Google Scholar

21. Berreman, D. W., "Optics in stratified and anisotropic media: 4x 4-matrix formulation," J. Opt. Soc. Am., Vol. 62, 502-510, 1972.        Google Scholar

22. Tuz, V. R., M. Y. Vidil, and S. L. Prosvirnin, "Polarization transformations by a magneto-photonic layered structure in the vicinity of a ferromagnetic resonance," J. Opt., Vol. 12, 095102, 2010.        Google Scholar

23. Wei, Y., M. Yan, and M. Qiu, "Generalized nihility media from transformation optics," J. Opt., Vol. 13, 024005, 2011.        Google Scholar

24. Castaldi, G., I. Gallina, V. Galdi, A. Alú, and N. Engheta, "Transformation-optics generalization of tunnelling effects in bi-layers made of paired pseudo-epsilon-negative/mu-negative media," J. Opt., Vol. 13, 2011.        Google Scholar

25. Collin, R. E., Foundation for Microwave Engineering, Wiley-Interscience, 1992.

26. Jakubovich, V. A. and V. H. Starzhinskij, Linear Differential Equations with Periodic Coefficients, Wiley, 1975.

27. Lakhtakia, A. and C. M. Krowne, "Restricted equivalence of paired epsilon-negative and mu-negative layers to a negative phase-velocity materials (alias left-handed material)," Optik, Vol. 114, 305-307, 2003.        Google Scholar

28. Orfanidis, S. J., Electromagnetic Waves and Antennas, Chapter 4, Propagation in Birefringent Media, 2008, www.ece.rutgers.edu/∼orfanidi/ewa..

29. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.        Google Scholar

30. Shevchenko, V. V., "Forward and backward waves: Three definitions and their interrelation and applicability," Phys.-Usp., Vol. 50, 287, 2007.        Google Scholar

31. Tretyakov, S., I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 695-706, 2003.        Google Scholar

32. Qiu, C.-W., "Chiral nihility effects on energy flow in chiral materials," J. Opt. Soc. Am. A, Vol. 25, 55-63, 2008.        Google Scholar

33. Tuz, V. R. and C.-W. Qiu, "Semi-infinite chiral nihility photonics: Parametric dependence, wave tunneling and rejection," Progress In Electromagnetics Research, Vol. 103, 139-152, 2010.        Google Scholar

34. Shen, J. Q., "Negative refractive index in gyrotropically magnetoelectric media," Phys. Rev. B, Vol. 73, 045113, 2006.        Google Scholar