Vol. 40
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-05-02
A Feasibility Study on Microwave Imaging for Brain Stroke Monitoring
By
Progress In Electromagnetics Research B, Vol. 40, 305-324, 2012
Abstract
The adoption of microwave imaging as a tool for non-invasive monitoring of brain stroke has recently gained increasing attention. In this respect, the paper aims at providing a twofold contribution. First, we introduce a simple design tool to devise guidelines to properly set the working frequency as well as to choose the optimum matching medium needed to facilitate the penetration of the probing wave into the head. Second, we propose an imaging strategy based on a modified formulation of the linear sampling method, which allows a quasi real time monitoring of the disease's evolution. The accuracy of the design guidelines and performance of the imaging strategy are assessed trough numerical examples dealing with 2D anthropomorphic phantoms.
Citation
Rosa Scapaticci, Loreto Di Donato, Ilaria Catapano, and Lorenzo Crocco, "A Feasibility Study on Microwave Imaging for Brain Stroke Monitoring," Progress In Electromagnetics Research B, Vol. 40, 305-324, 2012.
doi:10.2528/PIERB12022006
References

1. Rosamon, W., et al. "Heart disease and stroke statistics --- 2007 update: A report from the American heart association statistics committee and stroke statistics subcommittee," Circulation, Vol. 115, e69-e171, 2007.
doi:10.1161/CIRCULATIONAHA.106.179918

2. Semenov, S. Y., R. H. Svenson, and G. P. Tatsis, "Microwave spectroscopy of myocardial ischemia and infarction. 1. Experimental study," Ann. Biomed. Eng., Vol. 28, 48-54, 2000.
doi:10.1114/1.253

3. Semenov, S. Y., et al. "Dielectrical spectroscopy of canine myocardium during acute ischemia and hypoxia at frequency spectrum from 100 kHz to 6 GHz ," IEEE Trans. Med. Imaging, Vol. 21, 547-550, 1994.

4. Semenov, S. Y. and D. R. Corfield, "Microwave tomography for brain imaging: Feasibility assessment for stroke detection," Int. J. Antennas Propag., Vol. 2008, Article ID 254830, 8 pages, 2008.

5. Ireland, D. and M. Bialkowski, "Feasibility study on microwave stroke detection using a realistic phantom and the FDTD method ," Proc. of Asia Pacific Microwave Conference, Singapore, 2010.

6. Ireland, D. and M. Bialkowski, "Microwave head imaging for stroke detection," Progress In Electromagnetics Research M, Vol. 21, 163-175, 2011.
doi:10.2528/PIERM11082907

7. Mesri, H. Y., M. K. Najafabadi, and T. McKelvey, "A multidimensional signal processing approach for classification of microwave measurements with application to stroke type diagnosis," 33rd Annual International Conference of the IEEE EMBS, Boston, 2011.

8. Fhager, A. and M. Persson, "A microwave measurement system for stroke detection," Antennas and Propagation Conference (LAPC), Loughborough, UK, Nov. 14-15, 2011.

9. Sultana, E., A. Khwaja, K. Mansetaa, Y. Mallalaha, Q. Zhang, L. Najafizadehc, A. Gandjbakhche, K. Pourrezad, and A. S. Daryoush, "Comparison of tethered and untethered helmet mounted fNIR systems for TBI application," IEEE Wireless and Microwave Technology Conference, 2011.

10. Gilmore, C., A. Abubakar, W. Hu, T. M. Habashy, and P. M. van den Berg, "Microwave biomedical data inversion using the finite-difference contrast source inversion method," IEEE Trans. Antenn. Propag., Vol. 57, 1528-1538, 2009.
doi:10.1109/TAP.2009.2016728

11. Mohammed, B. J., A. M. Abbosh, D. Ireland, and M. E. Bialkowski, "Compact wideband antenna for microwave imaging of brain stroke," Progress In Electromagnetics Research C, Vol. 27, 27-39, 2012.
doi:10.2528/PIERC11102708

12. Bertero, M. and P. Boccacci, "Introduction to inverse problems in imaging," Inst. Phys., Bristol, UK, 1998.

13. Isernia, T., V. Pascazio, and R. Pierri, "On the local minima in a tomographic imaging technique," IEEE Trans. Geosci. Remote Sens., Vol. 39, 1596-1607, 2001.
doi:10.1109/36.934091

14. Cakoni, F. and D. Colton, Qualitative Methods in Inverse Scattering Theory, Springer-Verlag, Berlin Heidelberg, 2006.

15. Catapano, I. and L. Crocco, "An imaging method for concealed targets," IEEE Trans. Geosci. Remote Sens., Vol. 47, 1301-1309, 2009.
doi:10.1109/TGRS.2008.2010773

16. Slaney, M., A. C. Kak, and L. E. Larsen, "Limitations of imaging with first-order diffraction tomography," IEEE Trans. Microwave Theory Tech., Vol. 32, 860-874, 1984.
doi:10.1109/TMTT.1984.1132783

17. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa, "On quantitative microwave tomography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.
doi:10.2528/PIER09080604

18. Catapano, I., L. Crocco, L. Di Donato, G. Angiulli, T. Isernia, A. F. Morabito, S. Tringali, O. M. Bucci, and R. Massa, "Guidelines for effective microwave breast imaging: An accurate numerical assessment against 3D anthropomorphic phantoms," Proceeding EUCAP 2010 --- European Conference on Antennas & Propagation, Barcelona, Spain, Apr. 12-16, 2009.

19. Gabriel, S., R. W. Lau, and C. Gabriel, "Dielectric properties of biological tissue: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

20. Balanis, C. A., Advanced Engineering Electromagnetics, John Wileys and Sons, 1989.

21. Zubal, I. G., C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi, and P. B. Hoffer, "Computerized three-dimensional segmented human anatomy," Med. Phys., Vol. 21, No. 2, 299-302, 1994.
doi:10.1118/1.597290

22. Dielectric properties of body tissues in the frequency range 10 Hz-100 GHz, , http://niremf.ifac.cnr.it/tissprop.

23. Richmond, J., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Trans. Antenn. Propag., Vol. 13, No. 13, 334-341, 1965.
doi:10.1109/TAP.1965.1138427

24. Romeo, S., L. Di Donato, O. M. Bucci, I. Catapano, L. Crocco, M. R. Scarfi, and R. Massa, "Dielectric characterization study of liquid based materials for mimicking breast tissues," Microwave Opt. Tech. Lett., Vol. 53, 1276-1280, 2011.
doi:10.1002/mop.26001

25. Catapano, I., L. Crocco, and T. Isernia, "On simple methods for shape reconstruction of unknown scatterers," IEEE Trans. Antenn. Propag., Vol. 55, 1431-1436, 2007.
doi:10.1109/TAP.2007.895563

26. Catapano, I., L. Crocco, and T. Isernia, "Linear sampling method: Physical interpretation and guidelines for a successful application," PIERS Online, Vol. 4, No. 2, 291-295, 2008.
doi:10.2529/PIERS071005053840

27. Catapano, I., L. Crocco, and T. Isernia, "Sampling methods for shape reconstruction of 3D buried targets," IEEE Trans. Geosci. Remote Sens., Vol. 46, 3265-3273, 2008.
doi:10.1109/TGRS.2008.921745

28. Colton, D., K. Giebermann, and P. Monk, "A regularized sampling method for solving three dimensional inverses scattering problems," SIAM J. Sci. Comput., Vol. 21, 2316-2330, 2000.
doi:10.1137/S1064827598340159

29. Catapano, I., L. Crocco, M. D'Urso, and T. Isernia, "3D microwave imaging via preliminary support reconstruction: Testing on the Fresnel 2008 database ," Inverse Probl., Vol. 25, 024002, 2009.
doi:10.1088/0266-5611/25/2/024002