Vol. 38
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-02-14
Modified DOA Estimation Methods with Unknown Source Number Based on Projection Pretransformation
By
Progress In Electromagnetics Research B, Vol. 38, 387-403, 2012
Abstract
In this paper, our purpose is to develop methods that have high resolution and robustness in the presence of unknown source number, array error, snapshot deficient, and low SNR. The DOA (Direction-Of-Arrival) estimation with unknown source number methods referred as MUSIC-like and SSMUSIC-like methods have shown high resolution in the snapshot deficient and low SNR scenario. However, they need to take several times of fine search on the full space, which bring about high computational complexities. Thus, modified methods are proposed to reduce computational complexities and improve performances further. In the modified methods, we priori use conventional beamforming to get the rough distribution of signals' angle, which helps to reduce computational complexity and connect the technique of projection pretransformation. Then through projection pretransformation, original methods are further simplified and improved. As demonstrated in computer simulations, the modified DOA estimation with unknown source number methods shows not only higher resolution in the snapshot deficient and lower SNR scenario, but also more robustness against array errors. Although the proposed methods cannot replace the array calibration completely, they reduce the requirement of calibration accuracy. Combined with these advantages, it has been shown that the new methods are more suitable in engineering.
Citation
Qing-Chen Zhou, Huotao Gao, Fan Wang, and Jie Shi, "Modified DOA Estimation Methods with Unknown Source Number Based on Projection Pretransformation," Progress In Electromagnetics Research B, Vol. 38, 387-403, 2012.
doi:10.2528/PIERB11121313
References

1. Bencheikh, M. L. and Y. Wang, "Combined esprit-rootmusic for DOA-DOD estimation in polarimetric bistatic MIMO radar," Progress In Electromagnetics Research Letters, Vol. 22, 109-117, 2011.

2. Yang, P., F. Yang, and Z.-P. Nie, "DOA estimation with sub-array divided technique and interporlated esprit algorithm on a cylindrical conformal array antenna," Progress In Electromagnetics Research, Vol. 103, 201-216, 2010.
doi:10.2528/PIER10011904

3. Liang, G. L., K. Zhang, F. Jin, et al. "Modified MVDR algorithm for DOA estimation using acoustic vector hydrophone," 2011 IEEE International Conference on Computer Science and Automation Engineering, 327-330, 2011.
doi:10.1109/CSAE.2011.5952480

4. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Trans. Ant. Propag., Vol. 34, No. 2, 276-280, 1986.
doi:10.1109/TAP.1986.1143830

5. McCloud, M. L. and L. L. Scharf, "A subspace identification algorithm for high-resolution DOA estimation," IEEE Trans. Ant. Propag., Vol. 50, No. 10, 1382-1390, 2002.
doi:10.1109/TAP.2002.805244

6. Mestre, X. and M. A. Lagunas, "Modified subsoace algorithms for DOA estimation with large arrays," IEEE Trans. Signal Process., Vol. 56, No. 2, 598-614, 2008.
doi:10.1109/TSP.2007.907884

7. Porat, B. and B. Friedlander, "Analysis of the asymptotic relative efficiency of MUSIC algorithm," IEEE Trans on Acoust., Speech, Signal Process., Vol. 36, No. 4, 532-544, 1988.
doi:10.1109/29.1557

8. Nadakudit, R. R. and A. Edelman, "Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples," IEEE Trans. Signal Process., Vol. 56, No. 7, 2625-2638, 2008.
doi:10.1109/TSP.2008.917356

9. Nadler, B., "Nonparametric detection of signals by information theoretic criteria: Performance analysis and an improved estimator," IEEE Trans. Signal Process., Vol. 58, No. 5, 2746-2756, 2010.
doi:10.1109/TSP.2010.2042481

10. Haddadi, F., M. M. Mohamaddi, M. M. Nayebi, et al. "Statistical performance analysis of MDL source enumeration in array processing," IEEE Trans. Signal Process., Vol. 58, No. 1, 452-457, 2010.
doi:10.1109/TSP.2009.2028207

11. Chen, P., T.-J. Wu, and J. Yang, "A comparative study of model selection criteria for the number of signals," IET Radar, Sonar and Navigation, Vol. 2, No. 3, 180-188, 2008.
doi:10.1049/iet-rsn:20070102

12. Radich, B. M. and K. M. Buckley, "The effect of source number underestimation on MUSIC location estimates," IEEE Trans. Signal Process., Vol. 42, No. 1, 233-236, 1994.
doi:10.1109/78.258148

13. Manikas, A. N. and L. R. Turnor, "Adaptive signal parameter estimation and classification technique," IEE Proceedings F, Vol. 138, No. 3, 267-277, 1991.

14. Qi, C. Y., Y. S. Zhang, Y. Han, et al. "An algorithm on high resolution DOA estimation with unknown number of signal sources," 4th International Conference on Microwave and Millimeter Wave Technology, ICMMT, 227-230, 2004.

15. Stavropoulos, K. V. and A. Manikas, "Array calibration in the presence of unknown sensor characteristics and mutual coupling," EUSIPCO Proceedings, Vol. 3, 1417-1420, 2000.

16. Liu, A., G. Liao, C. Zeng, et al. "An eigenstructure method for estimating DOA and sensor gain-phase errors," IEEE Trans. Signal Process., Vol. 59, No. 12, 5944-5956, 2011.
doi:10.1109/TSP.2011.2165064

17. Ng, B. P., J. P Lie, M. H. Er, et al. "A practical simple geometry and gain/phase calibration technique for antenna array processing," IEEE Trans. Signal Process., Vol. 58, No. 3, 1668-1676, 2010.
doi:10.1109/TSP.2009.2037074

18. Blunt, S. D., C. Tszping, and K. Gerlach, "Robust DOA estimation: The reiterative superresolution (RISR) algorithm," IEEE Trans. Aerosp. Electron. Syst., Vol. 47, No. 1, 332-346, 2011.
doi:10.1109/TAES.2011.5705679

19. Stoica, P., Z. Wang, and J. Li, "Extended derivation of MUSIC in presence of steering vector errors," IEEE Trans. Signal Process., Vol. 53, No. 3, 1209-1211, 2005.
doi:10.1109/TSP.2004.842201

20. Zhou, Q.-C., H. Gao, and F. Wang, "A high resolution DOA estimating method without estimating the number of sources," Progress In Electromagnetics Research C, Vol. 25, 233-247, 2012.
doi:10.2528/PIERC11102607

21. Lee, H. B. and M. S. Wengrovitz, "Resolution threshold of beamspace MUSIC for two closely spaced emitters," IEEE Trans on Acoust., Speech, Signal Process., Vol. 38, No. 9, 1545-1559, 1990.
doi:10.1109/29.60074

22. Luo, Y. J., T. Zhang, and S. H. Zhang, "A novel algorithm for adaptive beamforming based on projection transformation," 2001 Proceedings of CIE International Conference on Radar, 552-556, Beijing, 2001.

23. Shahi, S. N., M. Emadi, and K. H. Sadeghi, "High resolution DOA estimation in fully coherent environments," Progress In Electromagnetics Research C, Vol. 5, 135-148, 2008.