Vol. 38
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-02-10
Efficient Circular Array Synthesis with a Memetic Differential Evolution Algorithm
By
Progress In Electromagnetics Research B, Vol. 38, 367-385, 2012
Abstract
In this article, we introduce an improved optimization based technique for the synthesis of circular antenna array. The main objective is to achieve minimum side lobe levels, maximum directivity and null control for the non-uniform, planar circular antenna array. The design procedure utilizes an improved variant of a prominent and efficient metaheuristic algorithm of current interest, namely the Differential Evolution (DE). An efficient classical local search technique called Solis Wet's algorithm is incorporated with the competitive Differential Evolution. While the competitive DE is used for the global exploration, Solis Wet's algorithm is employed for local search. Combining the capability of both techniques the hybrid algorithm exhibits improved performance for circular array design problem. Three examples of circular array design problems are considered to illustrate the effectiveness of the hybrid algorithm cDESW (Competiteve Differential Evolution with Solis Wet's technique). The design results obtained using cDESW has comfortably outperformed the results obtained by other state-of-the-art metaheuristics like CLPSO, JADE.
Citation
Ankush Mandal, Hamim Zafar, Swagatam Das, and Athanassios V. Vasilakos, "Efficient Circular Array Synthesis with a Memetic Differential Evolution Algorithm," Progress In Electromagnetics Research B, Vol. 38, 367-385, 2012.
doi:10.2528/PIERB11111802
References

1. Godara, L. C. (ed.), Handbook of Antennas in Wireless Communications, CRC, Boca Raton, FL, 2002.

2. Chandran, S. (ed.), Adaptive Antenna Arrays: Trends and Applications, Springer, 2004.

3. Tsoulos, G. V. (ed.), Adaptive Antennas for Wireless Communications, IEEE Press, Piscataway, NJ, 2001.

4. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, Wiley-New York, 1999.

5. Udina, A., N. M. Martin, and L. C. Jain, "Linear antenna array optimization by genetic means," Third International Conference on Knowledge-based Intelligent Information Engineering Systems Adelaide, Australia, Sept. 1999.

6. Cengiz, Y. and H. Tokat, "Linear antenna array design with use of genetic, memetic and tabu search optimization algorithms," Progress In Electromagnetics Research C, Vol. 1, 63-72, 2008.
doi:10.2528/PIERC08010205

7. Weng, W-C., F. Yang, and A. Z. Elsherbeni, "Linear antenna array synthesis using Taguchi's method: A novel optimization technique in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 723-730, Mar. 2007.
doi:10.1109/TAP.2007.891548

8. Ares-Pena, F. J., A. Rodriguez-Gonzalez, E. Villanueva-Lopez, and S. R. Rengarajan, "Genetic algorithms in the design and optimization of antenna array patterns," IEEE Transactions on Antennas and Propagation, Vol. 47, 506-510, Mar. 1999.
doi:10.1109/8.768786

9. Tian, Y. B. and J. Qian, "Improve the performance of a linear array by changing the spaces among array elements in terms of genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 53, 2226-2230, Jul. 2005.

10. Khodier, M. M. and C. G. Christodoulou, "Linear array geometry synthesis with minimum side lobe level and null control using particle swarm optimization," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 8, Aug. 2005.
doi:10.1109/TAP.2005.851762

11. Dessouky, M. I., H. A. Sharshar, and Y. A. Albagory, "Efficient sidelobe reduction technique for small-sized concentric circular arrays," Progress In Electromagnetics Research, Vol. 65, 187-200, 2006.
doi:10.2528/PIER06092503

12. Dessouky, M. I., H. A. Sharshar, and Y. A. Albagory, "Optimum normalized-Gaussian tapering window for side lobe reduction in uniform concentric circular arrays," Progress In Electromagnetics Research, Vol. 69, 35-46, 2007.
doi:10.2528/PIER06111301

13. Dessouky, M., H. Sharshar, and Y. Albagory, "A novel tapered beamforming window for uniform concentric circular arrays," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2077-2089, 2006.
doi:10.1163/156939306779322701

14. Chen, T. B., Y. L. Dong, Y. C. Jiao, and F. S. Zhang, "Synthesis of circular antenna array using crossed particle swarm optimization algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1785-1795, 2006.
doi:10.1163/156939306779292273

15. Fallahi, R. and M. Roshandel, "Effect of mutual coupling and configuration of concentric circular array antenna on the signal-to-interference performance in CDMA systems," Progress In Electromagnetics Research, Vol. 76, 427-447, 2007.
doi:10.2528/PIER07070104

16. Zhang, J., W. Wu, and D. G. Fang, "360° scanning multi-beam antenna based on homogeneous ellipsoidal lens fed by circular array," Electronics Letters, 298-300, Institution of Engineering and Technology, 2011.

17. Panduro, M., A. L. Mendez, R. Dominguez, and G. Romero, "Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms," Int. J. of Electron. and Commun., AEU, Vol. 60, 713-717, 2006.
doi:10.1016/j.aeue.2006.03.006

18. Shihab, M., Y. Najjar, N. Dib, and M. Khodier, "Design of non-uniform circular antenna arrays using particle swarm optimization," Journal of Electrical Engineering, Vol. 59, No. 4, 216-220, 2008.

19. Panduro, M. A., C. A. Brizuela, L. I. Balderas, and D. A. Acosta, "A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays," Progress In Electromagnetics Research B, Vol. 13, 171-186, 2009.
doi:10.2528/PIERB09011308

20. Gurel, L. and O. Ergul, "Design and simulation of circular arrays of trapezoidal-tooth log-periodic antennas via genetic optimization," Progress In Electromagnetics Research, Vol. 85, 243-260, 2008.
doi:10.2528/PIER08081809

21. Barkat, O. and A. Benghalia, "Synthesis of superconducting circular antennas placed on circular array using a particle swarm optimisation and the full-wave method," Progress In Electromagnetics Research B, Vol. 22, 103-119, 2010.
doi:10.2528/PIERB10042404

22. Singh, U. and T. S. Kamal, "Design of non-uniform circular antenna arrays using biogeography-based optimization," Microwaves, Antennas & Propagation, IET, 1365-1370, 2011.
doi:10.1049/iet-map.2010.0204

23. Roy, G. G., S. Das, P. Chakraborty, and P. N. Suganthan, "Design of non-uniform circular antenna arrays using a modified invasive weed optimization algorithm," IEEE Transactions on Antennas and Propagation, 110-118, 2011.
doi:10.1109/TAP.2010.2090477

24. Huang, M., S. Yang, G. Li, and Z. Nie, "Synthesis of low and equal-ripple sidelobe patterns in time-modulated circular array antennas," J. Infrared Milli. Terahz. Waves, Vol. 30, No. 8, 802-812, 2009.
doi:10.1007/s10762-009-9501-y

25. Storn, R. and K. Price, "Differential evolution --- A simple and efficient heuristic for global optimization over continuous spaces," Journal of Global Optimization, Vol. 11, No. 4, 341-359, 1997.
doi:10.1023/A:1008202821328

26. Zhang, J. and A. C. Sanderson, "JADE: Adaptive differential evolution with optional external archive," IEEE Transactions on Evolutionary Computation, Vol. 13, No. 5, 945-958, Oct. 2009.
doi:10.1109/TEVC.2009.2014613

27. Das, S. and P. N. Suganthan, "Differential evolution --- A survey of the state-of-the-art," IEEE Transactions on Evolutionary Computation, Vol. 15, No. 1, 4-31, 2011.
doi:10.1109/TEVC.2010.2059031

28. Qing, A., "Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy," IEEE Transactions on Antennas and Propagation, Vol. 51, 1251-1262, 2003.
doi:10.1109/TAP.2003.811492

29. Huang, M., S. Yang, W. Xiong, and Z.-P. Nie, "Design and optimization of spherical lens antennas including practical feed models," Progress In Electromagnetics Research, Vol. 120, 355-370, 2011.

30. Rocca, P., G. Oliveri, and G. Massa, "Differential evolution as applied to electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 38-49, 2011.

31. Solis, F. J. and R. J. Wets, "Minimization by random search techniques," Mathematical Operations Research, Vol. 6, 19-30, 1981.
doi:10.1287/moor.6.1.19

32. Liang, J. J., A. K. Qin, P. N. Suganthan, and S. Baskar, "Comprehensive learning particle swarm optimizer for global optimization of multimodal functions," IEEE Transactions on Evolutionary Computation, Vol. 10, 281-295, 2006.
doi:10.1109/TEVC.2005.857610