Vol. 31
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-07-05
Smart Electromagnetic Simulations: Guidelines for Design of Experiments Technique
By
Progress In Electromagnetics Research B, Vol. 31, 357-379, 2011
Abstract
Electromagnetic design problems usually involve a large number of varying parameters. A designer can use different kinds of models in order to achieve optimum design. Some models, e.g., finite-element model, can be very precise: however, it requires large computational costs (i.e., CPU time). Therefore, the designer should use a screening process to reduce the number of parameters in order to reduce the required computational time. In this paper, using the Design of Experiments (DOE) approach to reduce the number of parameters is explored. The benefits of this technique are tremendous. For example, once researchers realize how much insight and information can be obtained in a relatively short amount of time from a well-designed experiment, DOE would become a regular part of the way they approach their simulation projects. The main objective of this paper is to apply the DOE technique to electromagnetic simulations of different systems and to explore its effectiveness on a new field, namely the magnetic refrigeration systems. The methodology of the DOE is presented to assess the effects of the different variables and their interaction involved in electromagnetic simulations design and optimization processes.
Citation
Houssem Rafik El Hana Bouchekara, Ghassan Dahman, and Mouaaz Nahas, "Smart Electromagnetic Simulations: Guidelines for Design of Experiments Technique," Progress In Electromagnetics Research B, Vol. 31, 357-379, 2011.
doi:10.2528/PIERB11052104
References

1. Mohammed, O. A., D. A. Lowther, M. H. Lean, and B. Alhalabi, "On the creation of a generalized design optimization environment for electromagnetic devices," IEEE Transactions on Magnetics, Vol. 37, No. 5, 3562-3565, 2001.
doi:10.1109/20.952662

2. Gang, L., G. Y. Yang, K. R. Shao, Y. Guo, J. Zhu, and J. D. Lavers, "Electromagnetic device design based on RBF models and two new sequential optimization strategies," IEEE Transactions on Magnetics, Vol. 46, No. 8, 3181-3184, Aug. 2010.
doi:10.1109/TMAG.2010.2043717

3. Carcangiu, S., A. Fanni, A. Mereu, and A. Montisci, "Grid-enabled tabu search for electromagnetic optimization problems," IEEE Transactions on Magnetics, Vol. 46, No. 8, 3265-3268, 2010.
doi:10.1109/TMAG.2010.2045487

4. Nikolova, N. K., Solving design and inverse-imaging problems through electromagnetic simulation , 17th International Conference on Microwaves, Radar and Wireless Communications MIKON, No. 1--8, 19-21, 2008.

5. Sanchez, S. M., "Work smarter, not harder: Guidelines for designing simulation experiments," Proceedings of the Winter Simulation Conference, 4-7, 2005.

6. Altayib, K. and A. Ali, "Improvement for alignment process of automotive assembly plant using simulation and design of experiments ," International Journal of Experimental Design and Process Optimisation , Vol. 2, No. 2, 145-160, 2011.
doi:10.1504/IJEDPO.2011.040264

7. Garcia, S., A. Fernandez, J. Luengo, and F. Herrera, "Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power," Information Sciences, Vol. 180, No. 10, 2044-2064, 2010.
doi:10.1016/j.ins.2009.12.010

8. Kutlea, L., N. Pavlovica, M. Dorotica, I. Zadroa, M. Kapustica, and B. Halassy, "Robustness testing of live attenuated rubella vaccine potency assay using fractional factorial design of experiments ," Vaccine, Vol. 28, No. 33, 5497-5502, 2010.
doi:10.1016/j.vaccine.2010.04.111

9. Kleijnen, J. P. C., S. M. Sanchez, T. W. Lucas, and T. M. Cioppa, "State-of-the-art review: A user's guide to the brave new world of designing simulation experiments," Journal on Computing, Vol. 17, No. 3, 263-289, 2005.

10. Uy, M. and J. K. Telford, "Optimization by design of experiment techniques," IEEE Aerospace Conference, No. 1--10, 7-14, 2009.

11. Pillet, M., "Les plans d'experiences par la methode taguchi," Les Editions d'Organisation, 1997.

12. Costa, M. C., Optimisation de dispositifs electromagnetiques dans un contexte d'analyse par la methode des elements finis, Ph.D. Thesis National Polytechnic Institute of Grenoble, 2001.

13. Demonsant, J., "Comprendre et mener des plans d'experiences," Afnor, ISBN 2-124-75032-1, 1996.

14. Hong, S. C., S. J. Kim, E. J. Hahn, S. Park, and C. S. Kim, , "Magnetic refrigeration properties of La0:8 Ca0:2 Mn0:9957Fe57 ," IEEE Transactions on Magnetics, Vol. 45, No. 6, 2565-2568, Jun. 2009.
doi:10.1109/TMAG.2009.2018888

15. Bruck, E., O. Tegus, X. W. Li, et al. "Magnetic refrigeration-towards room-temperature applications," Physica B: Condensed Matter, Vol. 327, No. 2--4, 431-437, Apr. 2003.
doi:10.1016/S0921-4526(02)01769-6

16. Dong, A. and X. Lu, "A new permanent magnet system for rotating magnetic refrigerator," IEEE Transactions on Applied Superconductivity, Vol. 20, No. 3, 834-837, Jun. 2010.
doi:10.1109/TASC.2010.2040257