Vol. 125
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-03-11
Electromagnetic-Thermal Modeling of Multi-Turn Electromagnetic Rail Launcher with Phase Transition
By
Progress In Electromagnetics Research M, Vol. 125, 31-40, 2024
Abstract
Electromagnetic thermal performance is critical during electromagnetic launch. However, due to the harsh in-bore environment, it is difficult to obtain multi-parameter information by means of experimental measurement, which further limits our understanding of the field distribution of electromagnetic launcher. In this paper, considering the temperature dependence of material conductivity and armature solid-liquid isothermal phase transition, a bidirectional coupling model of electro-magnetic-thermal field of multi-turn electromagnetic rail launcher is established. The reliability of this model is verified by comparing the calculation results of the same model and input conditions with the numerical tool EMAP3D, as well as the related experimental comparison. In addition, the multi-turn and traditional EMRLs are compared and analyzed. The results show that compared to single-turn EMRL, the armatures have greater driving force in two multi-turn configurations, and the impulse lifting rates are about 1/2. In the multi-turn configurations, the lateral resultant forces of the two armatures are not zero, while the lateral force difference in the integrated negative rail configuration is relatively small. The ablation of the armature in the integrated negative rail configuration is less severe.
Citation
Jian Sun, Ling Xiong, Yuantao Cong, and Junsheng Cheng, "Electromagnetic-Thermal Modeling of Multi-Turn Electromagnetic Rail Launcher with Phase Transition," Progress In Electromagnetics Research M, Vol. 125, 31-40, 2024.
doi:10.2528/PIERM24012204
References

1. Hundertmark, S., G. Vincent, F. Schubert, and J. Urban, "The NGL-60 railgun," IEEE Transactions on Plasma Science, Vol. 47, No. 7, 3327-3330, Jul. 2019.
doi:10.1109/TPS.2019.2921099

2. Fair, H. D., "The science and technology of electric launch," IEEE Transactions on Magnetics, Vol. 37, No. 1, 25-32, Jan. 2001.
doi:10.1109/20.911783

3. Zhang, B., Y. Kou, K. Jin, and X. Zheng, "A multi-field coupling model for the magnetic-thermal-structural analysis in the electromagnetic rail launch," Journal of Magnetism and Magnetic Materials, Vol. 519, 167495, Feb. 2021.
doi:10.1016/j.jmmm.2020.167495

4. Angeli, M. and E. Cardelli, "Electro-thermal behavior of solid armatures," IEEE Transactions on Magnetics, Vol. 35, No. 1, 47-52, Jan. 1999.
doi:10.1109/20.738374

5. Sun, Jian, Junsheng Cheng, Qiuliang Wang, Ling Xiong, Yuantao Cong, and Yichen Wang, "Numerical simulation of melt-wave erosion in 2-D solid armature," IEEE Transactions on Plasma Science, Vol. 50, No. 4, 1032-1039, Apr. 2022.
doi:10.1109/TPS.2022.3158526

6. Li, Shizhong, Jun Li, Shengguo Xia, Qingxia Zhang, and Peizhu Liu, "Phase division and critical point definition of electromagnetic railgun sliding contact state," IEEE Transactions on Plasma Science, Vol. 47, No. 5, 2399-2403, May 2019.
doi:10.1109/TPS.2019.2891175

7. Bayati, Mohammad Sajjad and Asghar Keshtkar, "Novel study of the rail's geometry in the electromagnetic launcher," IEEE Transactions on Plasma Science, Vol. 43, No. 5, 1652-1656, May 2015.
doi:10.1109/TPS.2015.2417532

8. Sun, Jian, Junsheng Cheng, Qiuliang Wang, Ling Xiong, Yuantao Cong, and Yichen Wang, "Research on arc suppression parameter matching of augmented electromagnetic launcher," IEEE Transactions on Plasma Science, Vol. 49, No. 12, 3988-3993, Dec. 2021.
doi:10.1109/TPS.2021.3125045

9. Bayati, M. Sajjad, Asghar Keshtkar, and Ahmad Keshtkar, "Transition study of current distribution and maximum current density in railgun by 3-D FEM-IEM," IEEE Transactions on Plasma Science, Vol. 39, No. 1, 13-17, Jan. 2011.
doi:10.1109/TPS.2010.2063040

10. Bayati, M. Sajjad, Asghar Keshtkar, and Ahmad Keshtkar, "Thermal computation in railgun by hybrid time domain technique 3-D-FEM-IEM," IEEE Transactions on Plasma Science, Vol. 39, No. 1, 18-21, Jan. 2011.
doi:10.1109/TPS.2010.2070847

11. Pang, Zhanzhong, Housheng Wang, Hui Wang, and Li Zhang, "Analysis of current and magnetic field distributions in rail launcher with peaceman-rachford finite-difference method," IEEE Transactions on Plasma Science, Vol. 40, No. 10, 2717-2722, Oct. 2012.
doi:10.1109/TPS.2012.2211083

12. Gong, Fei and Chunsheng Weng, "3-D numerical study of meltwave erosion in solid armature railgun," High Voltage Engineering, Vol. 40, No. 7, 2245-2250, 2014.

13. Hsieh, K., "A lagrangian formulation for mechanically, thermally coupled electromagnetic diffusive processes with moving conductors," IEEE Transactions on Magnetics, Vol. 31, No. 1, 604-609, Jan. 1995.
doi:10.1109/20.364626

14. Shatoff, H., D. A. Pearson, and A. E. Kull, "Simulation of dynamic armature motion in a railgun with coupling of electromagnetic, thermal and structural effects using shifted finite element fields," 2005 IEEE Pulsed Power Conference, 253-256, 2005.

15. Lin, Qing-Hua and Bao-Ming Li, "Numerical simulation of interior ballistic process of railgun based on the multi-field coupled model," Defence Technology, Vol. 12, No. 2, 101-105, Apr. 2016.
doi:10.1016/j.dt.2015.12.008

16. Bayati, M. Sajjad, Asghar Keshtkar, and S. V. Al-Din Makki, "Analyzing the current distribution, magnetic field and inductance gradient at the circular rail in comparison to rectangular rail," 2012 16th International Symposium on Electromagnetic Launch Technology, 1-5, Beijing, China, May 2012.

17. Stefani, F., R. Merrill, and T. Watt, "Numerical modeling of melt-wave erosion in two-dimensional block armatures," IEEE Transactions on Magnetics, Vol. 41, No. 1, 437-441, Jan. 2005.
doi:10.1109/TMAG.2004.838758