Vol. 115
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-12-25
A Red Cross Bag MPA with a Very Low SAR and High F/b Ratio for Bio-Medical Applications
By
Progress In Electromagnetics Research Letters, Vol. 115, 99-104, 2024
Abstract
A microstrip patch antenna of red cross bag shape is designed, simulated, and fabricated. The antenna is designed to work at 5.8 GHz for on-body applications. Small size, low specific absorption rate, and high front to back ratio with a low-profile design are achieved. The measured frequency is 5.878 GHz with 25 mm as the largest dimension used, and the matching impedance is -47.06 dB. Other parameters are recorded from the simulator, such as front-to-back ratio which is 37.37 dB and a specific absorption rate of 0.0984 W/kg in 10 gm. Finally, this work is compared with a compact dual-band antenna with paired L-shape slots, a watchstrap integrated wideband antenna, and a dual-band AMC-based MIMO. The proposed red cross bag antenna overcomes the mentioned works in terms of small size, high front-to-back ratio, and low specific absorption rate.
Citation
Anwer Sabah Mekki, Siba Monther Yousif, and Saif Mohammed Baraa, "A Red Cross Bag MPA with a Very Low SAR and High F/b Ratio for Bio-Medical Applications," Progress In Electromagnetics Research Letters, Vol. 115, 99-104, 2024.
doi:10.2528/PIERL23102803
References

1. Dimitropoulos, Nikos, Theodoros Togias, Natalia Zacharaki, George Michalos, and Sotiris Makris, "Seamless human-robot collaborative assembly using artificial intelligence and wearable devices," Applied Sciences, Vol. 11, No. 12, Jun. 2021.
doi:10.3390/app11125699

2. Sabry, Farida, Tamer Eltaras, Wadha Labda, Khawla Alzoubi, and Qutaibah Malluhi, "Machine learning for healthcare wearable devices: The big picture," Journal of Healthcare Engineering, Vol. 2022, Apr. 18 2022.
doi:10.1155/2022/4653923

3. Yousif, Siba Monther, Anwer Sabah Mekki, and Ahmed Jumaa Lafta, "Compact low profile 5.8 GHz MPA for on-body applications," Bulletin of Electrical Engineering and Informatics, Vol. 12, No. 3, 1495-1501, 2023.
doi:10.11591/eei.v12i3.4518

4. Gupta, Anupma and Vipan Kumar, "DGS-based wideband MIMO antenna for on-off body communication with port isolation enhancement operating at 2.45 GHz industrial scientific and medical band," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 7, 888-901, May 3 2021.
doi:10.1080/09205071.2020.1865209

5. Kiani, Sina, Pejman Rezaei, and Mina Fakhr, "A CPW-fed wearable antenna at ISM band for biomedical and WBAN applications," Wireless Networks, Vol. 27, No. 1, 735-745, Jan. 2021.
doi:10.1007/s11276-020-02490-1

6. AL-Sabti, Saif Mohamed Baraa and Dogu Cagdas Atilla, "A novel vision for mathematical model between electromagnetic radiation and thermodynamic parameters in biochemistry frame," Applied Nanoscience, Aug. 4 2021.
doi:10.1007/s13204-021-01989-z

7. Corchia, Laura, Giuseppina Monti, Egidio De Benedetto, Andrea Cataldo, Leopoldo Angrisani, Pasquale Arpaia, and Luciano Tarricone, "Fully-textile, wearable chipless tags for identification and tracking applications," Sensors, Vol. 20, No. 2, Jan. 2020.
doi:10.3390/s20020429

8. Mandal, Danvir and Shyam Sundar Pattnaik, "Quad-band wearable slot antenna with low SAR values for 1.8 GHz DCS, 2.4 GHz WLAN and 3.6/5.5 GHz WiMAX applications," Progress In Electromagnetics Research B, Vol. 81, 163-182, 2018.

9. Liu, Qiongzhen, Cong Yi, Jiahui Chen, Ming Xia, Ying Lu, Yuedan Wang, Xue Liu, Mufang Li, Ke Liu, and Dong Wang, "Flexible, breathable, and highly environmental-stable Ni/PPy/PET conductive fabrics for efficient electromagnetic interference shielding and wearable textile antennas," Composites Part B-Engineering, Vol. 215, Jun. 15 2021.
doi:10.1016/j.compositesb.2021.108752

10. Van Baelen, Dries, Nicola Macoir, Quinten van den Brande, Eli De Poorter, Sam Lemey, Jo Verhaevert, and Hendrik Rogier, "Fully flexible textile antenna-backed sensor node for body-worn UWB localization," Sensors, Vol. 21, No. 5, Mar. 2021.
doi:10.3390/s21051641

11. Jameel, Maryam S., Yaqeen S. Mezaal, and Dogu Cagdas Atilla, "Miniaturized coplanar waveguide-fed UWB antenna for wireless applications," Symmetry, Vol. 15, No. 3, 633, 2023.

12. Jayakumar, S. and G. Mohanbabu, "A wearable low profile asymmetrical slotted ultra-wide band antenna for WBAN applications," Eurasip Journal on Wireless Communications and Networking, Vol. 2022, No. 1, Oct. 17 2022.
doi:10.1186/s13638-022-02186-4

13. Taleb, Houssein, Abbass Nasser, Guillaume Andrieux, Nour Charara, and Eduardo Motta Cruz, "Wireless technologies, medical applications and future challenges in WBAN: A survey," Wireless Networks, Vol. 27, No. 8, 5271-5295, Nov. 2021.
doi:10.1007/s11276-021-02780-2

14. Ahmad, Naveed, Basit Shahzad, Muhammad Arif, Diana Izdrui, Ioan Ungurean, and Oana Geman, "An energy-efficient framework for WBAN in health care domain," Journal of Sensors, Vol. 2022, Feb. 26 2022.
doi:10.1155/2022/5823461

15. Singh, Saurabh and Sudhanshu Verma, "Compact wideband circularly polarized bowtie slot antenna for WBAN applications," AEU-International Journal of Electronics and Communications, Vol. 136, Jul. 2021.
doi:10.1016/j.aeue.2021.153777

16. Dash, Rajib Kumar, Puspendu Bikash Saha, Dibyendu Ghoshal, and Gopinath Palai, "Fractal slot loaded compact wearable button antenna for IOT and X-band applications," Wireless Networks, Vol. 29, No. 2, 589-605, Feb. 2023.
doi:10.1007/s11276-022-03145-z

17. Ashar, Dhyey, Mamta Sharma, and others, "SAR evaluation of flexible UWB antenna for wearable applications," Journal of Physics: Conference Series, Vol. 2312, No. 1, 012051, 2022.

18. Varma, Sanjit, Somia Sharma, Merbin John, Richa Bharadwaj, Anuj Dhawan, and Shiban K. Koul, "Design and performance analysis of compact wearable textile antennas for IOT and body-centric communication applications," International Journal of Antennas and Propagation, Vol. 2021, Aug. 24 2021.
doi:10.1155/2021/7698765

19. Atanasova, Gabriela Lachezarova, Blagovest Nikolaev Atanasov, and Nikolay Todorov Atanasov, "Fully textile dual-band logo antenna for IOT wearable devices," Sensors, Vol. 22, No. 12, Jun. 2022.
doi:10.3390/s22124516

20. Ali Khan, Muhammad Usman, Raad Raad, Faisel Tubbal, Panagiotis Ioannis Theoharis, Sining Liu, and Javad Foroughi, "Bending analysis of polymer-based flexible antennas for wearable, general IOT applications: A review," Polymers, Vol. 13, No. 3, Feb. 2021.
doi:10.3390/polym13030357

21. Ahmad, Sarosh, Adnan Ghaffar, Niamat Hussain, and Nam Kim, "Compact dual-band antenna with paired l-shape slots for on- and off-body wireless communication," Sensors, Vol. 21, No. 23, Dec. 2021.
doi:10.3390/s21237953

22. Rabhi, Rania, Salem Gahgouh, and Ali Gharsallah, "Watchstrap integrated wideband circularly polarized antenna design for smartwatch applications," IET Microwaves Antennas & Propagation, Vol. 16, No. 9, 587-601, Jul. 2022.
doi:10.1049/mia2.12270

23. Du, Chengzhu, Ling-Ru Pei, Jie Zhang, and Cheng-Xin Shi, "A gain enhanced dual-band low SAR AMC-based MIMO antenna for WBAN and WLAN applications," Progress In Electromagnetics Research M, Vol. 115, 21-34, 2023.
doi:10.2528/PIERM22100201

24. Elrashidi, Ali, Khaled Elleithy, and Hassan Bajwa, "Performance analysis of a microstrip printed antenna conformed on cylindrical body at resonance frequency 4.6 GHz for TM01 mode," Procedia Comput. Sci., Vol. 10, 775-784, Aug. 27-29 2012.
doi:10.1016/j.procs.2012.06.099

25. Pozar, David M., Microwave Engineering, John Wiley & Sons, 2011.

26. Balanis, Constantine A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

27. Lu, Bao, Bo Pang, Wei Hu, and Wen Jiang, "Low-SAR antenna design and implementation for mobile phone applications," IEEE Access, Vol. 9, 96444-96452, 2021.
doi:10.1109/ACCESS.2021.3093720