Vol. 114
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-12-04
A Research Based on Transmissive Amplitude-Phase Dual Control About Generating High Quality Vertex Beam
By
Progress In Electromagnetics Research Letters, Vol. 114, 103-109, 2023
Abstract
Orbital angular moment modes (OAMs) have been proven to be promising resources for increasing communication capacity. To generate wideband and high purity OAM, we have proposed a transmitting metasurface with amplitude-phase dual control. The proposed unit cell is a novel split ring structure with upper and lower grating-like structures. By changing the direction angle and rotation angle of the split ring unit, the cross-polarization phase response and amplitude response of the unit are controlled respectively. The amplitude distribution of the metasurface array is calculated using Chebyshev synthesis method (CSM). We designed metasurface arrays with mode numbers l = 1, 2, 3 and it generated high purity OAM beams in the frequency band of 22--32\,GHz. Compared with traditional phase-control metasurface, amplitude-phase control surface can effectively improve the quality of OAM generation. The results have verified the accuracy of the proposed method, and the proposed method has potential applications in future communication system.
Citation
Honggang Hao, Pan Tang, Bao Li, and Zhonglyu Cai, "A Research Based on Transmissive Amplitude-Phase Dual Control About Generating High Quality Vertex Beam," Progress In Electromagnetics Research Letters, Vol. 114, 103-109, 2023.
doi:10.2528/PIERL23102005
References

1. Allen, L., M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes," Physical Review A, Vol. 45, No. 11, 8185-8189, Jun. 1992.
doi:10.1103/PhysRevA.45.8185

2. Yan, Yan, Guodong Xie, Martin P. J. Lavery, Hao Huang, Nisar Ahmed, Changjing Bao, Yongxiong Ren, Yinwen Cao, Long Li, Zhe Zhao, Andreas F. Molisch, Moshe Tur, Miles J. Padgett, and Alan E. Willner, "High-capacity millimetre-wave communications with orbital angular momentum multiplexing," Nature Communications, Vol. 5, 4876, Sep. 2014.
doi:10.1038/ncomms5876

3. Hui, Xiaonan, Shilie Zheng, Yiping Hu, Chen Xu, Xiaofeng Jin, Hao Chi, and Xianmin Zhang, "Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 966-969, 2015.
doi:10.1109/LAWP.2014.2387431

4. Cheng, Wenchi, Wei Zhang, Haiyue Jing, Shanghua Gao, and Hailin Zhang, "Orbital angular momentum for wireless communications," IEEE Wireless Communications, Vol. 26, No. 1, 100-107, Feb. 2019.
doi:10.1109/MWC.2017.1700370

5. Guo, Zhi-Gui and Guo-Min Yang, "Radial uniform circular antenna array for dual-mode OAM communication," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 404-407, 2017.
doi:10.1109/LAWP.2016.2581204

6. Bai, Xudong, Fanwei Kong, Jingyi Qian, Yunzhuo Song, Chong He, Xianling Liang, Ronghong Jin, and Weiren Zhu, "Polarization-insensitive metasurface lens for efficient generation of convergent OAM beams," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2696-2700, Dec. 2019.
doi:10.1109/LAWP.2019.2949085

7. Azad, Abul K., Anatoly V. Efimov, Shuprio Ghosh, John Singleton, Antoinette J. Taylor, and Hou-Tong Chen, "Ultra-thin metasurface microwave flat lens for broadband applications," Applied Physics Letters, Vol. 110, No. 22, 224101, May 2017.
doi:10.1063/1.4984219

8. Li, Hai-Peng, Guang-Ming Wang, Tong Cai, Jian-Gang Liang, and Xiang-Jun Gao, "Phase- and amplitude-control metasurfaces for antenna main-lobe and sidelobe manipulations," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5121-5129, Oct. 2018.
doi:10.1109/TAP.2018.2858181

9. Zhang, Kuang, Yueyi Yuan, Xumin Ding, Haoyu Li, Badreddine Ratni, Qun Wu, Jian Liu, Shah Nawaz Burokur, and Jiubin Tan, "Polarization-engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing," Laser & Photonics Reviews, Vol. 15, No. 1, 2000351, Jan. 2021.
doi:10.1002/lpor.202000351

10. Ma, Qian, Chuan Bo Shi, Guo Dong Bai, Tian Yi Chen, Ahsan Noor, and Tie Jun Cui, "Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit," Advanced Optical Materials, Vol. 5, No. 23, 1700548, Dec. 2017.
doi:10.1002/adom.201700548

11. Zhang, Lei, Rui Yuan Wu, Guo Dong Bai, Hao Tian Wu, Qian Ma, Xiao Qing Chen, and Tie Jun Cui, "Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves," Advanced Functional Materials, Vol. 28, No. 33, 1802205, Aug. 2018.
doi:10.1002/adfm.201802205

12. Xin, Mingbo, Rensheng Xie, Guohua Zhai, Jianjun Gao, Dajun Zhang, Xiong Wang, Sensong An, Bowen Zheng, Hualiang Zhang, and Jun Ding, "Full control of dual-band vortex beams using a high-efficiency single-layer bi-spectral 2-bit coding metasurface," Optics Express, Vol. 28, No. 12, 17374-17383, Jun. 2020.
doi:10.1364/OE.394571

13. Zhang, Kuang, Yuxiang Wang, Shah Nawaz Burokur, and Qun Wu, "Generating dual-polarized vortex beam by detour phase: From phase gradient metasurfaces to metagratings," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 1, 200-209, Jan. 2022.
doi:10.1109/TMTT.2021.3075251

14. Akram, Muhammad Rizwan, Xudong Bai, Ronghong Jin, Guy A. E. Vandenbosch, Malin Premaratne, and Weiren Zhu, "Photon spin hall effect-based ultra-thin transmissive metasurface for efficient generation of OAM waves," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4650-4658, Jul. 2019.
doi:10.1109/TAP.2019.2905777

15. Ji, Chen, Jiakun Song, Cheng Huang, Xiaoyu Wu, and Xiangang Luo, "Dual-band vortex beam generation with different OAM modes using single-layer metasurface," Optics Express, Vol. 27, No. 1, 34-44, Jan. 2019.
doi:10.1364/OE.27.000034

16. Ishfaq, Muhammad, Xiuping Li, Zihang Qi, Wenyu Zhao, Abdul Aziz, Liangjie Qiu, and Seleemullah Memon, "A transmissive metasurface generating wideband OAM vortex beam in the Ka-band," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 8, 2007-2011, Aug. 2023.
doi:10.1109/LAWP.2023.3271675

17. Bao, Lei, Rui Yuan Wu, Xiaojian Fu, Qian Ma, Guo Dong Bai, Jing Mu, Ruizhe Jiang, and Tie Jun Cui, "Multi-beam forming and controls by metasurface with phase and amplitude modulations," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6680-6685, Oct. 2019.
doi:10.1109/TAP.2019.2925289

18. Li, Hai-Peng, Guang-Ming Wang, Tong Cai, Jian-Gang Liang, and Xiang-Jun Gao, "Phase- and amplitude-control metasurfaces for antenna main-lobe and sidelobe manipulations," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5121-5129, Oct. 2018.
doi:10.1109/TAP.2018.2858181

19. Lou, Qun and Zhi Ning Chen, "Sidelobe suppression of metalens antenna by amplitude and phase controllable metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 6977-6981, Oct. 2021.
doi:10.1109/TAP.2021.3076312

20. Rudge, A. W., "Antenna theory and design," Electronics and Power, Vol. 28, No. 3, 267, 1982.
doi:10.1049/ep.1982.0113

21. Wu, Rui Yuan, Lei Bao, Liang Wei Wu, Zheng Xing Wang, Qian Ma, Jun Wei Wu, Guo Dong Bai, Vincenzo Galdi, and Tie Jun Cui, "Independent control of copolarized amplitude and phase responses via anisotropic metasurfaces," Advanced Optical Materials, Vol. 8, No. 11, 1902126, Jun. 2020.
doi:10.1002/adom.201902126

22. Pan, Yibo, Feng Lan, Yaxin Zhang, Hongxin Zeng, Luyang Wang, Tianyang Song, Guiju He, and Ziqiang Yang, "Dual-band multifunctional coding metasurface with a mingled anisotropic aperture for polarized manipulation in full space," Photonics Research, Vol. 10, No. 2, 416-425, Feb. 2022.
doi:10.1364/PRJ.444773

23. Jiang, Shan, Chang Chen, Jun Ding, Hualiang Zhang, and Weidong Chen, "Alleviating orbital-angular-momentum-mode dispersion using a reflective metasurface," Physical Review Applied, Vol. 13, No. 5, 054037, May 2020.
doi:10.1103/PhysRevApplied.13.054037