Vol. 120
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-11-07
A Wideband High-Gain Antenna Loaded with Triangular Ring Metasurface
By
Progress In Electromagnetics Research M, Vol. 120, 179-189, 2023
Abstract
A broadband high gain antenna based on metasurface is proposed in this paper. The antenna consists of two layers, the lower layer is a square dielectric plate of 64 mm × 64 mm fed by aperture coupling which brings resonance frequencies closer to each other to improve bandwidth. The upper layer is a substrate of the same size, and the substrate is covered with a metasurface composed of 4×4 triangular slots. The impedance bandwidth is expanded by introducing the metasurface from 6.7% of the single-fed antenna to 23.8%, and the overall height of the antenna is 7 mm. The antenna is excited by an aperture coupled structure consisting of a microstrip line on the back and a narrow slot etched on the ground surface. The impedance bandwidth of the proposed antenna is 23.8%, ranging from 4.8 GHz to 6.1 GHz. The peak gain at 5.6 GHz is about 11.2 dB, and the gain is relatively stable throughout the entire operating frequency band. An antenna prototype is made, and the measurement results verify the design's correctness.
Citation
Ting Wu, Jia-Wei Wang, Mingjun Wang, and Kai Zhang, "A Wideband High-Gain Antenna Loaded with Triangular Ring Metasurface," Progress In Electromagnetics Research M, Vol. 120, 179-189, 2023.
doi:10.2528/PIERM23082902
References

1. Chaturvedi, D., A. Kumar, and S. Raghavan, "Wideband HMSIW-based slotted antenna for wireless fidelity application," IET Microw. Antenna. P., Vol. 13, No. 2, 258-262, 2019.
doi:10.1049/iet-map.2018.5110

2. Li, Y. J., Z. Y. Lu, and L. S. Yang, "CPW-fed slot antenna for medical wearable applications," IEEE Access, Vol. 7, 42107-42112, 2019.
doi:10.1109/ACCESS.2019.2908199

3. Yi, X. and H. Wong, "Wideband substrate integrated waveguide fed open slot antenna array," IEEE Access, Vol. 8, 74167-74174, 2020.
doi:10.1109/ACCESS.2020.2988053

4. Ali, A., H. Wang, Y. Yun, J. Lee, and I. Park, "Compact slot antenna integrated with a photovoltaic cell," J. Electromagn. Eng. Sc., Vol. 20, No. 4, 248-253, 2020.
doi:10.26866/jees.2020.20.4.248

5. Cui, T. J., L. Li, S. Liu, Q. Ma, L. Zhang, X. Wan, W. X. Jiang, and Q. Cheng, "Information metamaterial systems," Iscience, Vol. 23, No. 8, 2020.
doi:10.1016/j.isci.2020.101403

6. Wan, W., M. Xue, L. Cao, T. Ye, and Q. Wang, "Low-profile broadband patch-driven metasurface antenna," IEEE Antenn. Wirel. Pr., Vol. 19, No. 7, 1251-1255, 2020.
doi:10.1109/LAWP.2020.2997346

7. Liu, S., D. Yang, Y. Chen, K. Sun, X. Zhang, and Y. Xiang, "Low-profile broadband metasurface antenna under multimode resonance," IEEE Antenn. Wirel. Pr., Vol. 20, No. 9, 1696-1700, 2021.
doi:10.1109/LAWP.2021.3094302

8. Liu, S., D. Yang, and J. Pan, "A low-profile broadband dual-circularly-polarized metasurface antenna," IEEE Antenn. Wirel. Pr., Vol. 18, No. 7, 1395-1399, 2019.
doi:10.1109/LAWP.2019.2917758

9. Kedze, K. E., H. Wang, and I. Park, "A metasurface-based wide-bandwidth and high-gain circularly polarized patch antenna," IEEE T. Antenn. Propag., Vol. 70, No. 1, 732-737, 2021.
doi:10.1109/TAP.2021.3098574

10. Badawe, M. E., T. S. Almoneef, and O. M. Ramahi, "A true metasurface antenna," Sci. Rep. --- UK, Vol. 6, No. 1, 19268, 2016.
doi:10.1038/srep19268

11. Nie, N. S., X. S. Yang, Z. N. Chen, and B. Z. Wang, "A low-profile wideband hybrid metasurface antenna array for 5G and WiFi systems," IEEE T. Antenn. Propag., Vol. 68, No. 2, 665-671, 2019.
doi:10.1109/TAP.2019.2940367

12. Wang, J., H. Wong, Z. Ji, and Y. Wu, "Broadband CPW-fed aperture coupled metasurface antenna," IEEE Antenn. Wirel. Pr., Vol. 18, No. 3, 517-520, 2019.
doi:10.1109/LAWP.2019.2895618

13. Meriche, M. A., H. Attia, A. Messai, S. S. I. Mitu, and T. A. Denidni, "Directive wideband cavity antenna with single-layer meta-superstrate," IEEE Antenn. Wirel. Pr., Vol. 18, No. 9, 1771-1774, 2019.
doi:10.1109/LAWP.2019.2929579

14. Olawoye, T. O. and P. Kumar, "A high gain antenna with DGS for sub-6 GHz 5G communications," Adv. Electromagn., Vol. 11, No. 1, 41-50, 2022.
doi:10.7716/aem.v11i1.1670

15. Yang, Z. Z., F. Liang, Y. Yi, D. Zhao, and B. Z. Wang, "Metasurface-based wideband, low-profile, and high-gain antenna," IET Microw. Antenna. P., Vol. 13, No. 4, 436-441, 2019.
doi:10.1049/iet-map.2018.5111

16. Cao, Y., Y. Cai, W. Cao, B. Xi, Z. Qian, T. Wu, and L. Zhu, "Broadband and high-gain microstrip patch antenna loaded with parasitic mushroom-type structure," IEEE Antenn. Wirel. Pr., Vol. 18, No. 7, 1405-1409, 2019.
doi:10.1109/LAWP.2019.2917909

17. Liu, S., D. Yang, Y. Chen, K. Sun, X. Zhang, and Y. Xiang, "Low-profile broadband metasurface antenna under multimode resonance," IEEE Antenn. Wirel. Pr., Vol. 20, No. 9, 1696-1700, 2021.
doi:10.1109/LAWP.2021.3094302

18. Chen, D., Q. Xue, W. Yang, K. S. Chin, H. Jin, and W. Che, "A compact wideband low-profile metasurface antenna loaded with patch-via-wall structure," IEEE Antenn. Wirel. Pr., Vol. 22, No. 1, 179-183, 2022.
doi:10.1109/LAWP.2022.3206349

19. Kedze, K. E., H. Wang, and I. Park, "A metasurface-based wide-bandwidth and high-gain circularly polarized patch antenna," IEEE T. Antenn. Propag., Vol. 70, No. 1, 732-737, 2021.
doi:10.1109/TAP.2021.3098574