Vol. 120
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-11-02
Design and Optimization of 2D Photonic Crystal Based Compact All Optical T Splitter for Photonic Integrated Circuits
By
Progress In Electromagnetics Research M, Vol. 120, 135-144, 2023
Abstract
An all-optical compact polarization T splitter based on 2-dimensional photonic crystal with uniform structural and bandgap characteristics is proposed in this paper. A square lattice of silicon substrate with embedded air holes is used to create the proposed structure. Linear waveguides with 90˚ bends are created for light propagation by removing a number of holes to build the structure. Plane Wave Expansion and Finite Difference Time Domain methods are employed for simulating the structure. The transmittance of TE polarized mode at 1550 nm is 96%. The structural parameters, such as air hole radius and dielectric constant, are homogeneous throughout the structure, making production easier and reducing fabrication errors. The proposed polarization splitter has a simple design with small footprints and high Q factor to meet the demands of current optical integrated circuits.
Citation
Poonam Jindal, and Aarti Bansal, "Design and Optimization of 2D Photonic Crystal Based Compact All Optical T Splitter for Photonic Integrated Circuits," Progress In Electromagnetics Research M, Vol. 120, 135-144, 2023.
doi:10.2528/PIERM23080801
References

1. Goyal, R., "Introduction to nanomaterials and nanotechnology," Nanomaterials and Nanocomposites, 2018.

2. Yablonovitch, E., "Photonic crystals," J. Mod. Opt., Vol. 41, No. 2, 173-194, 1994.
doi:10.1080/09500349414550261

3. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed., 2008.

4. Yablonovitch, E., "Photonic crystals: Semiconductors of light," Scientific American, 2001.

5. Seydou, F. and T. Seppanen, Photonic Crystals: from Theory to Practice, 2001.

6. Takahashi, H., "Planar lightwave circuit devices for optical communication: Present and future," Act. Passiv. Opt. Components WDM Commun. III, Vol. 5246, 520, 2003.

7. Kaur, H. J., "Comparison of light absorption through biological tissue implanted with gold and silver nano-particles," J. Opt., Vol. 51, No. 3, 613-619, 2022.
doi:10.1007/s12596-022-00864-6

8. Pain, H. J., "Electromagnetic waves," The Physics of Vibrations and Waves, 2005.

9. Jaskorzynska, B., Z. J. Zawistowski, M. Dainese, J. Cardin, and L. Thylen, "Widely tunable directional coupler filters with 1D photonic crystal," Proceedings of 2005 7th International Conference Transparent Optical Networks, 2005, 136-139, 2005.
doi:10.1109/ICTON.2005.1505769

10. Rao, D. G. S., S. Swarnakar, and S. Kumar, "Design of photonic crystal based compact all-optical 2 × 1 multiplexer for optical processing devices," Microelectronics J., Vol. 112, 105046, 2021.
doi:10.1016/j.mejo.2021.105046

11. Park, D. S., J. H. Kim, B. H. Oo, S. G. Park, E. H. Lee, and S. G. Lee, "Design of photonic crystalbased THz devices: Power splitter and demultiplexer," Pacific Rim Conf. Lasers Electro-Optics, CLEO — Tech. Dig., Vol. 443, 0-1, 2007.

12. Zhang, Y., Y. Zhang, and B. Li, "Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals," Opt. Express, Vol. 15, No. 15, 9287, 2007.
doi:10.1364/OE.15.009287

13. Veisi, E., M. Seifouri, and S. Olyaee, "Design and numerical analysis of multifunctional photonic crystal logic gates," Opt. Laser Technol., Vol. 151, 108068, 2022.
doi:10.1016/j.optlastec.2022.108068

14. Saral, T. B., S. Robinson, and R. Arunkumar, "Two-dimensional photonic crystal based compact power splitters,", Vol. 2, 1-5, 2016.

15. Butt, M. A., S. N. Khonina, and N. L. Kazanskiy, "Recent advances in photonic crystal optical devices: A review," Opt. Laser Technol., Vol. 142, 107265, 2021.
doi:10.1016/j.optlastec.2021.107265

16. Arunkumar, R., J. K. Jayabarathan, and S. Robinson, "Design and analysis of optical Y-splitters based on two-dimensional photonic crystal ring resonator," Journal of Optoelectronics and Advanced Materials, Vol. 21, No. 7–8, 435-442, 2019.

17. Kaur, H. J. and Phalguni, "Design and analysis of single loop and double loop photonic crystal ring resonator based on hexagonal lattice structure," Optik (Stuttg), Vol. 179, 165-172, 2019.
doi:10.1016/j.ijleo.2018.10.157

18. Fan, S., S. G. Johnson, and J. D. Joannopoulos, "Waveguide branches in photonic crystals," Journal of the Optical Society of America B, Vol. 18, No. 2, 162-165, 2001.
doi:10.1364/JOSAB.18.000162

19. Gannat, G. A., D. Pinto, and S. S. A. Obayya, "New configuration for optical waveguide power splitters," IET Optoelectronics, Vol. 3, No. 2, 105-111, April 2009.
doi:10.1049/iet-opt.2008.0020

20. Lerer, A. M., I. V. Donets, and S. M. Tsvetkovskaya, "Study of wave propagation in two-dimensional photonic crystal," Proceedings of International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, DIPED, 63-65, 2016.

21. Mohammadi, M. and M. Mansouri-Birjandi, "Five-port power splitter based on pillar photonic crystal," Iran. J. Sci. Technol. Trans. Electr. Eng., Vol. 39, No. E1, 93-100, 2015.

22. Cheng, C. C., "New fabrication techniques for high quality photonic crystals," J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., Vol. 15, No. 6, 2764, 1997.

23. Gao, Y. F., et al., "Manipulation of topological beam splitter based on honeycomb photonic crystals," Opt. Commun., Vol. 483, 126646, 2021.
doi:10.1016/j.optcom.2020.126646

24. Geerthana, S. and S. Syedakbar, "Design and optimization of Y-Junction and T-Junction splitters using photonic crystal," Mater. Today Proc., Vol. 45, Part 2, 1722-5, 2021.
doi:10.1016/j.matpr.2020.08.617

25. Liu, D., D. S. Citrin, and S. Hu, "Compact high-performance polarization beam splitter based on a silicon photonic crystal heterojunction," Opt. Mater. (Amst)., Vol. 109, 110256, 2020.
doi:10.1016/j.optmat.2020.110256

26. Sridarshini, T., S. Indira Gandhi, and M. Rakshitha, "Design and analysis of 1xN symmetrical optical splitters for photonic integrated circuits," Optik (Stuttg), Vol. 169, 321-331, 2018.

27. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

28. Johnson, S. G. and J. D. Joannopoulos, "Introduction to photonic crystals: Bloch’s Theorem, Band Diagrams, and Gaps (But No Defects) Maxwell’s Equations in periodic media," Physics, 1-16, February 2003.

29. Reynolds, A. L., U. Peschel, F. Lederer, P. J. Roberts, T. F. Krauss, and P. J. I. De Maagt, "Coupled defects in photonic crystals," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 10, 1860-1867, 2001.
doi:10.1109/22.954799

30. Hou, J., M. Li, and Y. Song, "Recent advances in colloidal photonic crystal sensors: Materials, structures and analysis methods," Nano Today, Vol. 22, 132-144, 2018.
doi:10.1016/j.nantod.2018.08.008

31. Gedney, S. D., Introduction to the Finite-Difference Time-Domain (FDTD)) Method for Electromagnetics, Vol. 27, 2011.
doi:10.1007/978-3-031-01712-4

32. De Raedt, H., K. Michielsen, J. S. Kole, and M. T. Figge, "One-step finite-difference time-domain algorithm to solve the Maxwell equations," Phys. Rev. E — Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., Vol. 67, No. 5, 12, 2003.

33. Rajasekar, R., G. Thavasi Raja, and S. Robinson, "Numerical analysis of reconfigurable and multifunctional barium titanate platform based on photonic crystal ring resonator," IEEE Trans. Nanotechnol., Vol. 20, 282-291, 2021.
doi:10.1109/TNANO.2021.3069401

34. Purnamaningsih, R. W., N. R. Poespawati, T. Abuzairi, and E. Dogheche, "An optical power divider based on mode coupling using GaN/Al2O3 for underwater communication," Photonics, Vol. 6, No. 2, 2019.
doi:10.3390/photonics6020063

35. Boulesbaa, M., M. E. Hathat, A. Bounegab, and O. Oulad Haddar, "Improvement of optical characteristics of silicon based 1×3 beam splitter with photonic crystal waveguide," AIP Conference Proceedings, Vol. 2440, No. 1, 020001, 2022.
doi:10.1063/5.0075004