Vol. 112
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-09-22
C-Band Frequency Generator for Space-Borne Synthetic Aperture Radar
By
Progress In Electromagnetics Research Letters, Vol. 112, 97-102, 2023
Abstract
This paper presents the design and implementation of a C-Band Frequency Generator developed for Space-borne Synthetic Aperture Radar. This Frequency Generator subsystem generates stable and coherent reference signals for all the sub-systems of C-Band Synthetic Aperture Radar payload. Frequency Generator based on frequency multiplication technique generates various coherent signals namely 500 MHz signal for digital clock, local oscillator (LO) signals of 900 MHz and 4500 MHz needed for receivers and chirp signal of 5400±37.5 MHz. This chirp signal is generated by direct modulation of the full bandwidth baseband signal of DC-37.5 MHz at 4500 MHz and subsequently mixing with 900 MHz signal. Frequency generator unit is realized in a compact two-tier architecture, using novel concept of full chirp modulation, resulting in 6° rmsphase error in the transmit chirp signal along with in-band spurious rejection better than 20 dBc, whereas other coherent frequencies resulting in out of band spurious rejection better than 53 dBc against the specification of 40 dBc.
Citation
Nidhi Singh, Jolly Dhar, Cheemalamarri Venkata Narasimha Rao, and Gurleen Singh Rajpal, "C-Band Frequency Generator for Space-Borne Synthetic Aperture Radar," Progress In Electromagnetics Research Letters, Vol. 112, 97-102, 2023.
doi:10.2528/PIERL23063002
References

1. Moreira, A. and G. Krieger, "Spaceborne synthetic aperture radar (SAR) systems: State of art and future developments," 33rd European Microwave Conference Proceedings (IEEE Cat. No.03EX723C), IEEE, Munich, Germany, 2003.

2. Misra, T., S. S. Rana, N. M. Desai, et al. "Synthetic aperture radar payload on-board RISAT-1: Configuration, technology and performance," Current Science Journal, 2013.

3. Rao, Ch. V. N., B. V. Bakori, J. Dhar, et al. "RF and microwave subsystems for RISAT-1 SAR payload," Signatures, Newsletter of the ISRS-AC, Vol. 24, No. 2, Apr. 2012.

4. Mishra, C., A. V. Garcia, E. S. Sinencio, et al. "A carrier frequency generator for multi-band UWB radios," IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006, IEEE, San Francisco, CA, USA, 2006.

5. Huang, X., W. Deng, H. Jia, et al. "A C-band FMCW radar transmitter with a 22 dBm output power series-stacking CMCD PA for long-distance detection in 180-nm CMOS technology," IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), IEEE, Zhuhai, China, 2021.

6. Madiwalesh, M. P., M. S. Ruchit, M. V. Harikrishna, et al. "Design and development of agile C-band synthesizer for RADAR," 2018 IEEE MTT-S International Microwave and RF Conference (IMaRC), IEEE, Kolkata, India, 2018.

7. Ansoft High frequency Structure Simulator User's Manual, Version 17.

8. Dhar, J., "Enclosure effect on microwave power amplifier," Progress In Electromagnetics Research C, Vol. 19, 163-177, 2011.
doi:10.2528/PIERC10112604

9. Dhar, J., S. K. Garg, R. K. Arora, B. V. Bakori, and S. S. Rana, "C-band pulsed solid state power amplifier for spaceborne applications," Progress In Electromagnetics Research Letters, Vol. 23, 75-87, 2011.
doi:10.2528/PIERL11020907

10. Bin Muhammad Nor, M. Z., S. K. Abdul Rahim, M. I. bin Sabran, and M. S. bin Abdul Rani, "Wideband planar Wilkinson power divider using double-sided parallel-strip line technique," Progress In Electromagnetics Research C, Vol. 36, 181-193, 2013.

11. Srivastava, S., G. V. Reddy, J. Dhar, et al. "Active frequency doubler at X-band," 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), IEEE, Bangalore, India, 2022.

12. Camargo, E., Design of FET Frequency Multipliers and Harmonic Oscillators, Artech House, 1998.

13. Klymyshyn, D. M. and Z. Ma, "Active frequency-multiplier design using CAD," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 4, Apr. 2003.
doi:10.1109/TMTT.2003.809183

14. Zhou, M., S. Tang, W. Wang, et al. "A frequency multiplication method based on extracting harmonic from narrowpulse," IEEE Access, Jul. 2019.

15. Mishra, S., N. Singh, J. Dhar, et al. "A GaAs based miniaturized C-band double balanced resistive IQ modulator for synthetic aperture radar (SAR) applications," IEEE Recent Advances in Geoscience and Remote Sensing: Technologies, Standards and Applications (TENGARSS), 2019.

16. Agrawal, G., P. Sinha, J. Dhar, et al. "Design and development of broadband and compact size IQ demodulator at 850 +- 112.5 MHz," 6th International Conference for Convergence in Technology (I2CT), Apr. 2-4, 2021.

17. Scott, A. W., Cooling of Electronic Equipment, John Wiley & Sons, 1974.