Vol. 117
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-06-27
Principal Component Analysis Accelerated the Iterative Convergence of the Characteristic Mode Basis Function Method for Analyzing Electromagnetic Scattering Problems
By
Progress In Electromagnetics Research M, Vol. 117, 129-138, 2023
Abstract
According to the characteristic mode basis function method (CMBFM) in analyzing electrically large problems, blocking and extending lead to the problem of slow convergence in the iterative solution of a reduced matrix equation, and the characteristic mode basis function method combined with principal component analysis (CMBFM-PCA) is proposed in this study. The characteristic modes (CMs), calculated from each extended block, are subjected to PCA to enhance the orthogonality between them and improve the reduced matrix's condition number to facilitate its quick convergence through an iterative solution. The corresponding numerical calculations demonstrate that significant efficiency and accuracy are achieved by the proposed method.
Citation
Zhong-Gen Wang, Fei Guo, Wen-Yan Nie, Yufa Sun, and Pan Wang, "Principal Component Analysis Accelerated the Iterative Convergence of the Characteristic Mode Basis Function Method for Analyzing Electromagnetic Scattering Problems," Progress In Electromagnetics Research M, Vol. 117, 129-138, 2023.
doi:10.2528/PIERM23041504
References

1. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.

2. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 5, 1225-1251, Oct. 1996.
doi:10.1029/96RS02504

3. Zhao, K., M. Vouvakis, and J. F. Lee, "The adaptive cross approximation algorithm for accelerated MoM computations of EMC problems," IEEE Trans. Electromagn. Compat., Vol. 47, No. 4, 763-773, Nov. 2005.
doi:10.1109/TEMC.2005.857898

4. Tamayo, J. M., A. Heldring, and J. M. Rius, "Multilevel adaptive cross approximation (MLACA)," IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4600-4608, Dec. 2011.
doi:10.1109/TAP.2011.2165476

5. Song, J. M. and W. C. Chew, "Multilevel fast multipole algorithm for solving combined field integral equations of electromagnetic scattering," Microw. Opt. Technol. Lett., Vol. 10, No. 1, 14-19, Sep. 1995.
doi:10.1002/mop.4650100107

6. Lucente, E., A. Monorchio, and R. Mittra, "An iteration free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Trans. Antennas Propag., Vol. 56, No. 4, 999-1007, Apr. 2008.
doi:10.1109/TAP.2008.919166

7. Harrington, R. and J. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Trans. Antennas Propag., Vol. 19, No. 5, 622-628, Sep. 1971.
doi:10.1109/TAP.1971.1139999

8. Gao, X., G. Tian, Z. Shou, and S. Li, "A low-profile broadband circularly polarized patch antenna based on characteristic mode analysis," IEEE Antennas Wirel. Propag. Lett., Vol. 20, No. 2, 214-218, Feb. 2021.
doi:10.1109/LAWP.2020.3044320

9. Fu, C., C. Feng, W. Chu, Y. Yue, X. Zhu, and W. Gu, "Design of a broadband high-gain omnidirectional antenna with low cross polarization based on characteristic mode theory," IEEE Antennas Wirel. Propag. Lett., Vol. 21, No. 9, 1747-1751, Sep. 2022.
doi:10.1109/LAWP.2022.3179144

10. Lin, F. H. and Z. N. Chen, "Low-profile wideband metasurface antennas using characteristic mode analysis," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 1706-1713, Apr. 2017.
doi:10.1109/TAP.2017.2671036

11. Angiulli, G., G. Amendola, and G. Di Massa, "Application of characteristic modes to the analysis of scattering from microstrip antennas," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 8, 1063-1081, Jan. 2090.
doi:10.1163/156939300X00978

12. Wang, P., Z. G. Wang, Y. F. Sun, et al. "A characteristic mode basis function method for solving wide angle electromagnetic scattering problems," Journal of Electromagnetic Waves and Applications, Vol. 36, No. 14, 1968-1979, Mar. 2022.
doi:10.1080/09205071.2022.2051211

13. Jia, C., P. Gu, Z. He, et al. "Convergence acceleration of characteristic mode-based basis function method for connected array structures," IEEE Trans. Antennas Propag., Vol. 70, No. 8, 7322-7327, Aug. 2022.
doi:10.1109/TAP.2022.3145471

14. Wu, C., L. Guan, P. Gu, et al. "Application of parallel CM-MLFMA method to the analysis of array structures," IEEE Trans. Antennas Propag., Vol. 69, No. 9, 6116-6121, Sep. 2021.
doi:10.1109/TAP.2021.3069427

15. Jia, C., Z. He, M. Li, et al. "Characteristic mode-based efficient broadband electromagnetic scattering analysis method for array structures," IEEE Geosci. Remote Sens. Lett., Vol. 19, 1-5, Oct. 2022.

16. Wang, Z. G., P. Wang, Y. F. Sun, et al. "Fast analysis of bistatic scattering problems for three-dimensional objects using compressive sensing and characteristic modes," IEEE Antennas Wirel. Propag. Lett., Vol. 21, No. 9, 1817-1821, Sep. 2022.
doi:10.1109/LAWP.2022.3181602

17. He, R., B. G. Hu, W. S. Zheng, et al. "Robust principal component analysis based on maximum correntropy criterion," IEEE Trans. Image Process., Vol. 20, No. 6, 1485-1494, Jun. 2011.
doi:10.1109/TIP.2010.2103949

18. Gu, T., "Detection of small floating targets on the sea surface based on multi-features and principal component analysis," IEEE Geosci. Remote Sens. Lett., Vol. 17, No. 5, 809-813, May 2020.
doi:10.1109/LGRS.2019.2935262

19. Hao, T., L. Jing, and W. He, "An automated GPR signal denoising scheme based on mode decomposition and principal component analysis," IEEE Geosci. Remote Sens. Lett., Vol. 20, 1-5, Dec. 2022.