Vol. 109
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-02-19
Three 24 GHz End-Fire Dipole Antennas
By
Progress In Electromagnetics Research Letters, Vol. 109, 41-48, 2023
Abstract
An end fire antenna architecture based on transmission line (TML) theory is suggested. N element end fire antenna array could be constructed with N-1 elements of full wave dipole antennas and one half wave dipole antenna without additional impedance matching network. The N dipole antennas are placed with each other with a distance of quarter wave length, while the one half wave dipole antenna is at the outer most of the array, the farthest from the feeding point of the antenna array. And three 24 GHz dipole end-fire antenna arrays with gains of 7.1, 8.4 and 9.4 dB respectively are presented to explain and verify this end fire antenna architecture based on transmission line theory. Simulation and measurement results of the three end-fire antennas are given and compared. This 24 GHz end-fire antenna architecture could be utilized in 24 GHz planar end-fire antenna arrays to increase the effective isotropic radiated power (EIRP) of the transmitter.
Citation
Yanfei Mao, Chungeng Zhu, Shiju E, and Jiancheng Cai, "Three 24 GHz End-Fire Dipole Antennas," Progress In Electromagnetics Research Letters, Vol. 109, 41-48, 2023.
doi:10.2528/PIERL22112801
References

1. Shunshi, Z., Antenna Theory and Techniques, Publishing House of Electronic Industry, Beijing, 2015.

2. Yun, H. and K. Ma, "A cavity-backed end-fire dipole antenna using SISL technology for 24 GHz automotive anti-collision radar system," Proceedings of the 2018 IEEE MTT-S International Wireless Symposium (IWS), Chengdu, China, 2018.

3. Rajveer Singh, B., G. V. Rodney, and F. Mark, "Phased arrays and MIMO: Wideband 5G end fire elements on liquid crystal polymer for MIMO," Proceedings of the 2019 IEEE International Symposium on Phased Array System and Technology (PAST), Waltham, MA, USA, 2019.

4. Min, L., W. Rong, H. Yao, and W. Bo, "A low-profile wideband CP end-fire magnetoelectric antenna using dual-mode resonances," IEEE Trans. Antennas Propagation, Vol. 67, 4445-4452, 2019.
doi:10.1109/TAP.2019.2911399

5. Li, A. and K. M. Luk, "Millimeter-wave end-fire magneto-electric dipole antenna and arrays with asymmetrical substrate integrated coaxial line feed," IEEE Open J. Antennas Propagation, No. 2, 62-67, 2021.
doi:10.1109/OJAP.2020.3044437

6. Zeng, J. and K. M. Luk, "Wideband millimeter-wave end-fire magnetoelectric dipole antenna with microstrip-line feed," IEEE Trans. Antennas Propagation, No. 68, 2658-2665, 2020.
doi:10.1109/TAP.2019.2957089

7. Yanfei, M., E. Shiju, and Y. Suli, "A two-element 24 GHz planar end-fire dipole antenna array," 2021 International Applied Computational Electromagnetics Society (ACES-China) Symposium, Chengdu, China, 2021.

8. Yanfei, M. and E. Shiju, "A 24 GHz end-fire helix antenna with high gain turn ratio in PCB technology," 2021 2020 IEEE MTT-S International Wireless Symposium (IWS), China, 2020.

9. Isbell, D. E., "Log periodic dipole arrays," IRE Transactions on Antennas and Propagation, Vol. 8, No. 3, 256-270, 1960.
doi:10.1109/TAP.1960.1144848

10. Guohua, Z., C. Yong, Y. Qiuyan, Z. Shouzheng, and G. Jianjun, "Gain enhancement of printed log-periodic dipole array antenna using director cell," IEEE Transactions on Antennas and Propagations, Vol. 62, No. 11, 5915-5919, 2014.
doi:10.1109/TAP.2014.2355851

11. Manekiya, M., R. Mendicino, V. Mulloni, M. Donelli, and G. Marchi, "A compact ultra-wide band printed log-periodic antenna using a bow-tie structure," PIERS C, Vol. 124, No. 52, 2022.

12. Azaro, R., F. G. B. De Natale, M. Donelli, A. Massa, and E. Zeni, "Optimized design of a multifunction/multiband antenna for automotive rescue systems," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 392-400, 2006.
doi:10.1109/TAP.2005.863387