Vol. 113
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-09-19
Dual-Band Nanostructured Polarizer
By
Progress In Electromagnetics Research M, Vol. 113, 151-161, 2022
Abstract
We propose the design of a dual-band nano-structured polarizer that allows the transmission of two different linear polarizations within different frequency bands. A broad-band transmission window in the visible range exists for the x-polarization, whereas the y-polarization transmits efficiently in the near-infrared range. The transmittance exceeds 80% for the target polarization in both cases under normal incidence. This operation is achieved by an orthogonally patterned metallic surface having a long metal wire along the x-axis with four other small metal wires along the y-axis and allowing for a strong localized slit resonance to operate in the desired passband. The appropriate metal length and air gap choice lead to intense slit resonances in the spectral region of choice. The proposed design can be optimized for either ultrawide single band operation or dual-band perpendicular polarization operation.
Citation
Ragib Shakil Rafi, and Alessandro Salandrino, "Dual-Band Nanostructured Polarizer," Progress In Electromagnetics Research M, Vol. 113, 151-161, 2022.
doi:10.2528/PIERM22073102
References

1. Qin, F., L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, "Hybrid bilayer plasmonic metasurface efficiently manipulates visible light," Sci. Adv., Vol. 2, e1501168, 2016.
doi:10.1126/sciadv.1501168

2. Astilean, S., Ph. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Optics Communications, Vol. 175, 265-273, 2000.
doi:10.1016/S0030-4018(00)00462-4

3. Zhang, D., P. Wang, X. Jiao, et al. "Polarization properties of subwavelength metallic gratings in visible light band," Appl. Phys. B, Vol. 85, 139-143, 2006.
doi:10.1007/s00340-006-2403-y

4. Frese, D., Q. Wei, Y. Wang, L. Huang, and T. Zentgraf, "Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces," Nano Lett., Vol. 19, 3976-3980, 2019.
doi:10.1021/acs.nanolett.9b01298

5. Hsiao, H.-H., C. H. Chu, and D. P. Tsai, "Fundamentals and applications of metasurfaces," Small Methods, Vol. 1, 1600064, 2017.
doi:10.1002/smtd.201600064

6. Mizner, N., W. L. Barnes, and I. R. Hooper, "Plasmonic meta-atoms and metasurfaces," Nature Photonics, Vol. 8, 889-898, 2014.
doi:10.1038/nphoton.2014.247

7. Bai, B., L. Liu, R. Chen, and Z. Zhou, "Low loss, compact TM-pass polarizer based on hybrid plasmonic grating," IEEE Photonics Technology Letters, Vol. 29, 607-610, 2017.
doi:10.1109/LPT.2017.2663439

8. Wang, B., S. Blaize, and R. Salas-Montiel, "Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics," Nanoscale, Vol. 11, 20685-20692, 2019.
doi:10.1039/C9NR06948H

9. Huang, Z., H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, "Robust thin-film wire-grid thz polarizer fabricated via a low-cost approach," IEEE Photonics Technology Letters, Vol. 25, 81-84, 2013.
doi:10.1109/LPT.2012.2228184

10. Huang, Z., E. P. J. Parrott, H. Park, H. P. Chan, and E. Pickwell-MacPherson, "High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure," Opt. Lett., Vol. 39, 793-796, 2014.
doi:10.1364/OL.39.000793

11. Ding, F., Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, "Broadband high-efficiency half-waveplate: A supercell-based plasmonic metasurface approach," ACS Nano, Vol. 9, 4111-4119, 2015.
doi:10.1021/acsnano.5b00218

12. Huang, C.-P., Y.-L. Wang, and Y. Zhang, "Interference-type plasmonic polarizers and generalized law of Malus," J. Opt., Vol. 21, 105001, 2019.
doi:10.1088/2040-8986/ab3e8a

13. Xia, J., Z. Yuan, C. Wang, C. He, J. Guo, and C. Wang, "Design and fabrication of a linear polarizer in the 8-12 μm infrared region with multilayer nanogratings," OSA Continuum, Vol. 2, 1683-1692, 2019.
doi:10.1364/OSAC.2.001683

14. Pelzman, C. and S.-Y. Cho, "Polarization-selective optical transmission through a plasmonic metasurface," Appl. Phys. Lett., Vol. 106, 251101, 2015.
doi:10.1063/1.4922993

15. Han, C. and W. Y. Tam, "Plasmonic ultra-broadband polarizers based on Ag nano wire-slit arrays," Appl. Phys. Lett., Vol. 106, 081102, 2015.
doi:10.1063/1.4913360

16. Tang, S., F. Ding, T. Jiang, T. Cai, and H.-X. Xu, "Polarization-selective dual-wavelength gap-surface plasmon metasurfaces," Opt. Express, Vol. 26, 23760-23769, 2018.
doi:10.1364/OE.26.023760

17. Li, X., S. Tang, F. Ding, et al. "Switchable multifunctional terahertz metasurfaces employing vanadium dioxide," Sci, Rep., Vol. 9, 5454, 2019.
doi:10.1038/s41598-019-41915-6

18. Qiu, X., J. Shi, Y. Li, and F. Zhang, "All-dielectric multifunctional transmittance tunable metasurfaces based on guided mode resonance and ENZ effect," Nanotechnology, Vol. 32, 065202, 2021.
doi:10.1088/1361-6528/abc3e5

19. Cui, J., Q. F. Nie, Y. Ruan, S. S. Luo, F. J. Ye, and L. Chen, "Dual-polarization wave-front manipulation with high-efficiency metasurface," AIP Advances, Vol. 10, 095003, 2020.
doi:10.1063/5.0016973

20. Deshpande, R. A., F. Ding, and S. Bozhevolnyi, "Dual-band metasurfaces using multiple gap-surface plasmon resonances," ACS Appl. Mater. Interfaces, Vol. 12, 1250-1256, 2020.
doi:10.1021/acsami.9b15410

21. Ebbesen, T., H. Lezec, H. Ghaemi, et al. "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, 667-669, 1998.
doi:10.1038/35570

22. Lochbihler, H., "Surface polaritons on gold-wire gratings," Phys. Rev. B, Vol. 50, 4795-4801, 1994.
doi:10.1103/PhysRevB.50.4795

23. Astilean, S., Ph. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Optics Communications, Vol. 175, 265-273, 2000.
doi:10.1016/S0030-4018(00)00462-4

24. Moharam, M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am., Vol. 71, 811-818, 1981.
doi:10.1364/JOSA.71.000811

25. Li, L., "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A, Vol. 13, 1870-1876, 1996.
doi:10.1364/JOSAA.13.001870

26. Li, L., "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A, Vol. 14, 2758-2767, 1997.
doi:10.1364/JOSAA.14.002758

27. Moharam, M. G., E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A, Vol. 12, 1068-1076, 1995.
doi:10.1364/JOSAA.12.001068

28. Moharam, M. G. and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am., Vol. 72, 1385-1392, 1982.
doi:10.1364/JOSA.72.001385

29. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370

30. Zhou, J. and L. Guo, "Transition from a spectrum filter to a polarizer in a metallic nano-slit array," Sci. Rep., Vol. 4, 3614, 2014.
doi:10.1038/srep03614

31. Wang, J. J., F. Walters, X. Liu, P. Sciortino, and X. Deng, "High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78nm space nanowire grids," Appl. Phys. Lett., Vol. 90, 061104, 2007.
doi:10.1063/1.2437731

32. Lindberg, J., K. Lindfors, T. Setälä, M. Kaivola, and A. T. Friberg, "Spectral analysis of resonant transmission of light through a single sub-wavelength slit," Opt. Express, Vol. 12, 623-632, 2004.
doi:10.1364/OPEX.12.000623