Vol. 113
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-09-09
Bistatic RCS Control on Slot-Sinuous Antenna by Adding 3 and 5 Parasitic Ellipses Openings
By
Progress In Electromagnetics Research M, Vol. 113, 73-86, 2022
Abstract
In this paper, an ultra-wide band modified slot-sinuous antenna has been designed to enhance bistatic radar cross section (RCS) response. The design procedure consists of adding three or five parasitic ellipses openings to each of the slot-sinuous arm cells. The parasitic ellipsis allows to control bistatic RCS without impacting antenna radiation characteristics. Parasitic ellipses opening dimensions are small compared to the relative wavelength of the signal on each active region of the antenna. Ellipses deploy over the entire sinuous arms are scaled by the same expansion coefficient used to design the antenna itself. In the proposed design, ellipses parameters such as ellipses axis, radial position, and relative angle position on the sinuous cell are key parameters to be optimized for bistatic RCS reduction. The total number of designing parameters is finite, but their combination is infinite, which leads to the possibility of designing different antennas based on the required designing goals. The proposed solution and the results presented in this work show the applicability of the designing parameters to control bistatic RCS on active region antennas.
Citation
Elson Agastra, Alaksander Biberaj, Olimpjon Shurdi, and Bexhet Kamo, "Bistatic RCS Control on Slot-Sinuous Antenna by Adding 3 and 5 Parasitic Ellipses Openings," Progress In Electromagnetics Research M, Vol. 113, 73-86, 2022.
doi:10.2528/PIERM22071408
References

1. Mevoli, G., C. Lamacchia, P. Bia, A. Manna, D. Caratelli, and L. Mescia, "Supershaped sinuous antenna for UWB radar applications," 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), 1-3, IEEE, Aug. 2021, doi: 10.23919/ursigass51995.2021.9560346.

2. Abdollahvand, A., A. Pirhadi, H. Ebrahimian, and M. Abdollahvand, "A compact UWB printed antenna with bandwidth enhancement for in-body microwave imaging applications," Progress In Electromagnetics Research C, Vol. 55, 149-157, 2014.

3. Mohanna, M. M., E. A. Abdallah, H. El-Hennawy, and M. A. Attia, "A novel high directive WILLIS-SINHA tapered slot antenna for GPR application in detecting landmine," Progress In Electromagnetics Research C, Vol. 80, 181-198, 2018.

4. Hasim, N. S. B., K. A. H. Ping, M. T. Islam, Md. Z. Mahmud, S. Sahrani, D. A. A. Mat, and D. N. A. Zaidel, "A slotted UWB antipodal vivaldi antenna for microwave imaging applications," Progress In Electromagnetics Research M, Vol. 80, 35-43, 2019.

5. Alves, M. A., R. J. Port, and M. C. Rezende, "Simulations of the radar cross section of a stealth aircraft," 2007 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, 409-412, 2007, doi: 10.1109/IMOC.2007.4404292.

6. Dikmen, C. M. and G. Çakir, "Double side axe shaped UWB antenna with reduced RCS," 2013 Asia-Pacific Microwave Conference Proceedings (APMC), 215-217, 2013, doi: 10.1109/APMC.2013.6695098.

7. Xu, C., J. Su, and Z. Li, "Radar absorbing material applied to precise RCS regulation of complex scatterer structure," 2021 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 388-390, 2021, doi: 10.1109/IMWS-AMP53428.2021.9643935.

8. Pazokian, M., N. Komjani, and M. Karimipour, "Broadband RCS reduction of microstrip antenna using coding frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1382-1385, Aug. 2018, doi: 10.1109/lawp.2018.2846613.

9. Huang, X., Z. Zhao, and G. Wan, "A slotted frequency selective surface with its application in microstrip antenna RCS reduction," 2020 IEEE 3rd International Conference on Electronics Technology (ICET), 724-728, IEEE, May 2020, doi: 10.1109/icet49382.2020.9119716.

10. Chen, T., Q.-M. Cai, L. Zhu, B.-W. Luo, Y.-Y. Zhu, X. Cao, R. Zhang, N. Feng, and Y.-W. Zhao, "A high-gain, low RCS and dual-frequency microstrip antenna using frequency selective surface," 2019 Photonics & Electromagnetics Research Symposium --- Fall (PIERS --- Fall), 2249-2254, Xiamen, China, Dec. 17-20, 2019.

11. Zheng, Q., C. Guo, H. Li, and J. Ding, "Broadband radar cross-section reduction using polarization conversion metasurface," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 2, 197-206, Jan. 2018, doi: 10.1017/s1759078717001477.

12. Chatterjee, J., A. Mohan, and V. Dixit, "Radar cross section reduction and gain enhancement of slot antenna using polarization conversion metasurface for X-band applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 10, e22792, Jul. 2021, doi: 10.1002/mmce.22792.

13. Rajanna, P. K., K. Rudramuni, and K. Kandasamy, "Characteristic mode-based compact circularly polarized metasurface antenna for in-band RCS reduction," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 2, 131-137, Sep. 2019, doi: 10.1017/s1759078719001119.

14. Xie, P., G.-M. Wang, H.-P. Li, Y.-W. Wang, and B. Zong, "Wideband RCS reduction of high gain fabry-perot antenna employing a receiver-transmitter metasurface," Progress In Electromagnetics Research, Vol. 169, 103-115, 2020.

15. Zhu, L., Y. Liu, and Y. Jia, "A broadband low-RCS high-gain circularly polarized holographic antenna based on metasurface," 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-2, IEEE, May 2021, doi: 10.1109/icmmt52847.2021.9618044.

16. Parsha, M. K., A. Nandi, and B. Basu, "In-band RCS reduction antennas using an EBG surface," International Journal of Microwave and Wireless Technologies, 1-11, Jun. 2021, doi: 10.1017/s1759078721000933.

17. Modi, A. Y., C. A. Balanis, C. R. Birtcher, and H. N. Shaman, "Novel design of ultrabroadband radar cross section reduction surfaces using artificial magnetic conductors," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 5406-5417, Oct. 2017, doi: 10.1109/tap.2017.2734069.

18. Wang, F., Y. Ren, and K. Li, "Broadband RCS reduction of antenna with AMC using gradually concentric ring arrangement," International Journal of Antennas and Propagation, Vol. 2017, 1-7, 2017, doi: 10.1155/2017/1268947.

19. Agastra, E., A. Biberaj, O. Shurdi, B. Kamo, and A. Rakipi, "RCS analysis on ultra-wideband sinuous antenna with elliptical slots," 2022 Microwave Mediterranean Symposium (MMS), 1-6, IEEE, May 2022, doi: 10.1109/mms55062.2022.9825591.

20. Prasad, B. S. H. and M. V. S. Prasad, "Design and analysis of compact periodic slot multiband antenna with defected ground structure for wireless applications," Progress In Electromagnetics Research M, Vol. 93, 77-87, 2020.

21. Singh, A. and H. Singh, "Low RCS microstrip patch array with hybrid high impedance surface based ground plane," Progress In Electromagnetics Research Letters, Vol. 94, 75-84, 2020.

22. He, X., T. Chen, and X. Wang, "A novel low RCS design method for X-band Vivaldi antenna," International Journal of Antennas and Propagation, Vol. 2012, 1-6, 2012, doi: 10.1155/2012/218681.

23. Zhang, J., H. Li, Q. Zheng, J. Ding, and C. Guo, "Wideband radar cross-section reduction of a microstrip antenna using slots," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 9, 1042-1047, Aug. 2018, doi: 10.1017/s1759078718000569.

24. Zhang, J., Q. Zheng, H. Li, J. Ding, and C. Guo, "Wideband radar cross section reduction of a microstrip antenna with square slots," International Journal of Microwave and Wireless Technologies, Vol. 11, No. 4, 341-350, Feb. 2019, doi: 10.1017/s1759078719000011.

25. Hao, Y., Y. Liu, K. Li, and S. Gong, "Wideband radar cross-section reduction of microstrip patch antenna with split-ring resonators," Electronics Letters, Vol. 51, No. 20, 1608-1609, Oct. 2015, doi: 10.1049/el.2015.1725.

26. Mescia, L., G. Mevoli, C. M. Lamacchia, M. Gallo, P. Bia, D. Gaetano, and A. Manna, "Sinuous antenna for uwb radar applications," Sensors, Vol. 22, No. 1, 248, 2022, doi: 10.3390/s22010248.

27. Lamacchia, C. M., M. Gallo, L. Mescia, P. Bia, A. Manna, C. Canestri, and D. Gaetano, "Non-conventional cavity backed sinuous antenna for UWB radar applications," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 109-110, IEEE, Jul. 2020, doi: 10.1109/ieeeconf35879.2020.9329510.

28. Crocker, D. A. and W. R. Scott, "Sinuous antenna design for UWB radar," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1915-1916, IEEE, Jul. 2019, doi: 10.1109/apusncursinrsm.2019.8888630.

29. Agastra, E., L. Lucci, G. Pelosi, and S. Selleri, "High gain compact strip and slot UWB sinuous antennas," International Journal of Antennas and Propagation, Vol. 2012, 1-9, 2012, doi: 10.1155/2012/721412.

30. Luo, T. and Z. Nie, "RCS reduction of antipodal vivaldi antenna," 2015 Asia-Pacific Microwave Conference (APMC), Vol. 2, 1-3, IEEE, Dec. 2015, doi: 10.1109/apmc.2015.7413164.

31. Khoomwong, E. and C. Phongcharoenpanich, "Design of ultra-broadband bidirectional ring antenna with superellipse slot using MoM-RWG," 2017 International Symposium on Antennas and Propagation (ISAP), 1-2, IEEE, Oct. 2017, doi: 10.1109/isanp.2017.8228998.

32. Bitchikh, M. and F. Ghanem, "A four bandwidth-resolution UWB antipodal vivaldi antenna," Progress In Electromagnetics Research M, Vol. 53, 121-129, 2017.

33. Genovesi, S., F. Costa, and A. Monorchio, "Wideband radar cross section reduction of slot antennas arrays," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 163-173, Jan. 2014, doi: 10.1109/tap.2013.2287888.

34. ANSYS "HFSS --- High frequency electromagnetic simulation software,", https://www.ansys.com/products/electronics/ansys-hfss, 2022, accessed: Aug. 12, 2022.

35. Hansen, R., "Relationships between antennas as scatterers and as radiators," Proceedings of the IEEE, Vol. 77, No. 5, 659-662, May 1989, doi: 10.1109/5.32056.

36. Agastra, E., G. Pelosi, S. Selleri, and R. Taddei, "Multiobjective optimization techniques," Wiley Encyclopedia of Electrical and Electronics Engineering, 1-29, John Wiley & Sons, Inc., Sep. 2014, ISBN 9780471346081, doi: 10.1002/047134608x.w8226.