Vol. 100
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-08-25
A No-Network Matched High Gain Vertical Array Antenna for VHF Band Applications
By
Progress In Electromagnetics Research Letters, Vol. 100, 1-8, 2021
Abstract
This paper proposes a design method of vertically polarized VHF high-gain antenna, a four-element array form. Our design improves the overall gain of the antenna and reduces its loss. In our design, the conventional impedance conversion methods are abandoned. Instead, we directly use transmission lines for impedance match which greatly reduces the loss of the antenna in the frequency range of 150 MHz-300 MHz, ensuring that the antenna provides a higher gain, and its signal transmission efficiency is also improved.
Citation
Wenjun Zhu, and Li-Xin Guo, "A No-Network Matched High Gain Vertical Array Antenna for VHF Band Applications," Progress In Electromagnetics Research Letters, Vol. 100, 1-8, 2021.
doi:10.2528/PIERL20101404
References

1. Perez-Vega, C., "Path-loss model for broadcasting applications and outdoor communication systems in the VHF and UHF bands," IEEE Transactions on Broadcasting, Vol. 48, No. 2, June 2002.
doi:10.1109/TBC.2002.1021273

2. Best, S. R., "Realized noise gure of the general receiving antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 2013.

3. Ding, X., B. Wang, G. Zheng, and X. Li, "Design and realization of a GA-optimized VHF/UHF antenna with ``on-body" matching network," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 303-306, 2010, doi: 10.1109/LAWP.2010.2047374.
doi:10.1109/LAWP.2010.2047374

4. Moon, H., G. Lee, C. Chen, and J. L. Volakis, "An extremely low-pro le ferrite-loaded wideband VHF antenna design," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 322-325, 2012, doi: 10.1109/LAWP.2012.2191131.
doi:10.1109/LAWP.2012.2191131

5. Osaretin, I. A., A. Torres, and C. Chen, "A novel compact dual-linear polarized UWB antenna for VHF/UHF applications," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 145-148, 2009, doi: 10.1109/LAWP.2009.2012881.
doi:10.1109/LAWP.2009.2012881

6. Zhang, Z., Y. Zhao, S. Zuo, L. Yang, L. Ji, and G. Fu, "A broadband horizontally polarized omnidirectional antenna for VHF application," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2229-2235, May 2018, doi: 10.1109/TAP.2018.2810338.
doi:10.1109/TAP.2018.2810338

7. White, C. R., J. S. Colburn, and R. G. Nagele, "A non-foster VHF monopole antenna," IEEE An- tennas and Wireless Propagation Letters, Vol. 11, 584-587, 2012, doi: 10.1109/LAWP.2012.2201129.
doi:10.1109/LAWP.2012.2201129

8. Sussman-Fort, S. E. and R. M. Rudish, "Non-foster impedance matching of electrically-small antennas," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 8, 2230-2241, Aug. 2009, doi: 10.1109/TAP.2009.2024494.
doi:10.1109/TAP.2009.2024494

9. Bod, M., M. Ahmadi-Boroujeni, and K. Mohammadpour-Aghdam, "Design of a low-cost broadband loaded dipole antenna for VHF/UHF frequency range," IET Microwaves, Antennas & Propagation, Vol. 13, No. 12, 1983-1988, 2019, doi: 10.1049/iet-map.2018.5753.
doi:10.1049/iet-map.2018.5753

10. Ding, X., B. Wang, G. Ge, and D. Wang, "A broadband VHF/UHF double-whip antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 719-724, Feb. 2012, doi: 10.1109/TAP.2011.2173141.
doi:10.1109/TAP.2011.2173141

11. Balanis, C., Antenna Theory: Analysis and Design, 3rd Edition, Wiley-Interscience, Hoboken, NJ, USA, 2005.

12. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, 2006.