Vol. 91
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-06-03
Filterless 16-Tupled Optical Millimeter-Wave Generation Using Cascaded Parallel Mach-Zehnder Modulators with Extinction Ratio Tolerance
By
Progress In Electromagnetics Research Letters, Vol. 91, 129-135, 2020
Abstract
A 16-tupling frequency system for millimeter-wave generation using cascaded arrangement of parallel Mach-Zehnder modulators is presented in this paper. Parallel non-ideal Mach-Zehnder modulators are used to realize a Mach-Zehnder modulator (MZM) with an ideal splitting ratio of 0.5. Hence, parallel MZMs work as a modulator with ultra-high extinction ratio. A 5 GHz radio frequency signal is 16-tupled to 80 GHz with optical sideband suppression ratio of 64 dB and radio frequency spurious sideband suppression ratio of 31 dB respectively. The system has radio frequency spurious sideband suppression ratio ≥ 10 dB for modulation range of 2.79 to 2.86. Further, optical sideband suppression and radio frequency spurious sideband suppression ratios are independent of extinction ratio of MZMs.
Citation
Aasif Bashir Dar, Faroze Ahmad, and Rakesh Kumar Jha, "Filterless 16-Tupled Optical Millimeter-Wave Generation Using Cascaded Parallel Mach-Zehnder Modulators with Extinction Ratio Tolerance," Progress In Electromagnetics Research Letters, Vol. 91, 129-135, 2020.
doi:10.2528/PIERL20031009
References

1. Chen, S. and J. Zhao, "The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication," IEEE Communications Magazine, Vol. 52, No. 5, 36-43, May 2014.
doi:10.1109/MCOM.2014.6815891

2. Jia, Z., J. Yu, G. Ellinas, and G. Chang, "Key enabling technologies for optical-wireless networks: Optical millimeter-wave generation, wavelength reuse, and architecture," Journal of Lightwave Technology, Vol. 25, No. 11, 3452-3471, Nov. 2007.
doi:10.1109/JLT.2007.909201

3. Yan, J., A. Liang, F. Xin, and Q. Liu, "An optical microwave generator based on stimulated An optical microwave generator based on stimulated," Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), JW2A.181, 2018.

4. Zhang, C., L. Wang, and K. Qiu, "Proposal for all-optical generation of multiple-frequency millimeter-wave signals for RoF system with multiple base stations using FWM in SOA ," Opt. Express, Vol. 19, 13957-13962, 2011.
doi:10.1364/OE.19.013957

5. Wang, T., M. Chen, H. Chen, and S. Xie, "Millimetre-wave signal generation using FWM effect in SOA," Electronics Letters, Vol. 43, No. 1, 36-38, Jan. 4, 2007.
doi:10.1049/el:20072637

6. Stohr, R. H., A. Malcoci, and D. Jager, "Optical heterodyne millimeter-wave generation using 1.55-/spl mu/m traveling-wave photodetectors," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 10, 1926-1933, Oct. 2001.
doi:10.1109/22.954809

7. Browning, C., A. Delmade, Y. Lin, D. H. Geuzebroek, and L. P. Barry, "Optical heterodyne millimeter-wave analog radio-over-fiber with photonic integrated tunable lasers," Optical Fiber Communication Conference (OFC) 2019, OSA Technical Digest (Optical Society of America, 2019), W1I.4, 2019.

8. Li, X., J. Xiao, Y. Xu, and J. Yu, "QPSK vector signal generation based on photonic heterodyne beating and optical carrier suppression," IEEE Photonics Journal, Vol. 7, No. 5, 1-6, Oct. 2015.

9. Chen, L., Y. Pi, H. Wen, and S. Wen, "All-optical mm-wave generation by using direct-modulation DFB laser and external modulator," Microw. Opt. Technol. Lett., Vol. 49, 1265-1267, 2007.
doi:10.1002/mop.22449

10. Zhu, Z., S. Zhao, W. Zheng, W. Wang, and B. Lin, "Filterless frequency 12-tupling optical millimeter-wave generation using two cascaded dual-parallel Mach-Zehnder modulators," Appl. Opt., Vol. 54, 9432-9440, 2015.
doi:10.1364/AO.54.009432

11. He, Y., Y. Li, Y. Cai, X. Zhang, J. Liu, J. Xiao, S. Chen, and D. Fan, A full-duplex 100-GHz radio-over-fiber communication system based on frequency quadrupling, Vol. 175, 148-153, Optik, 2018.

12. Yu, S., W. Gu, A. Yang, T. Jiang, and C. Wang, "A frequency quadrupling optical mm-Wave generation for hybrid fiber-wireless systems," IEEE Journal on Selected Areas in Communications, Vol. 31, No. 12, 797-803, Dec. 2013.
doi:10.1109/JSAC.2013.SUP2.12130012

13. Mohamed, M., X. Zhang, B. Hraimel, and K. Wu, "Frequency sixupler for millimeter-wave over fiber systems," Opt. Express, Vol. 16, 10141-10151, 2008.
doi:10.1364/OE.16.010141

14. Ma, J., X. Xin, J. Yu, C. Yu, K. Wang, H. Huang, and L. Rao, "Optical millimeter wave generated by octupling the frequency of the local oscillator," J. Opt. Netw., Vol. 7, 837-845, 2008.
doi:10.1364/JON.7.000837

15. Li, X., S. Zhao, Z. Zhu, B. Gong, X. Chu, Y. Li, J. Zhao, and Y. Liu, "An optical millimeter-wave generation scheme based on two parallel dual-parallel Mach-Zehnder modulators and polarization multiplexing," Journal of Modern Optics, Vol. 62, No. 18, 1502-1509, 2015.
doi:10.1080/09500340.2015.1045948

16. Chen, Y., A. Wen, J. Guo, L. Shang, and Y. Wang, "A novel optical mm-wave generation scheme based on three parallel Mach-Zehnder modulators," Opt. Commun., Vol. 284, No. 5, 1159-1169, 2011.
doi:10.1016/j.optcom.2010.11.012

17. Zhu, Z., S. Zhao, Y. Li, X. Chu, X. Wang, and G. Zhao, "A radio-over-fiber system with Frequency 12-tupling optical millimeter-wave generation to overcome chromatic dispersion," IEEE J. Quantum Electron., Vol. 49, No. 11, 919-922, 2013.
doi:10.1109/JQE.2013.2281664

18. Baskaran, M. and R. Prabakaran, "Optical millimeter wave signal generation with frequency 16-tupling using cascaded MZMs and no optical filtering for radio over fiber system," Journal of the European Optical Society-Rapid Publications, Vol. 14, 13, 2018.
doi:10.1186/s41476-018-0080-1

19. Dar, A. B. and F. Ahmad, "A full-duplex 40GHz radio-over-fiber transmission system based on frequency octupling," Optical and Quantum Electronics, Vol. 51, 324, 2019.
doi:10.1007/s11082-019-2020-8