Vol. 40
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-01-07
Effects of Electromagnetic Disturbance on Light Intensity Signal of Laser Beam System
By
Progress In Electromagnetics Research M, Vol. 40, 167-178, 2014
Abstract
In performing the experiments, the interference source has the form of a hollow PVC tube wrapped with a current-carrying coil, while the detector has the form of a PIN (Positive-Intrinsic-Negative) photodiode. The experimental results show that the electromagnetic disturbance (EMD) signal effect is dependent on the number of turns, the direction of the electromagnetic field, and the frequency and amplitude of the interference voltage. Specifically, it is shown that when the electromagnetic field acts in the opposite direction to that of the laser beam, the intensity and optical power of the detected signal decrease with an increasing interference frequency or amplitude. By contrast, when the electromagnetic field acts in the same direction as that of the laser beam, the intensity and optical power increase with an increasing interference frequency or amplitude. In addition, it is shown that the effect of EMD on the intensity of the laser beam increases with an increasing laser beam dispersion (i.e., an increasing distance from the laser source).
Citation
Han-Chang Tsai, "Effects of Electromagnetic Disturbance on Light Intensity Signal of Laser Beam System," Progress In Electromagnetics Research M, Vol. 40, 167-178, 2014.
doi:10.2528/PIERM14111301
References

1. Dincer, F., O. Akgol, M. Karaaslan, E. Unal, and C. Sabah, "Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime," Progress In Electromagnetics Research, Vol. 144, 93-101, 2014.
doi:10.2528/PIER13111404

2. Wefky, A., F. Espinosa, L. de Santiago, A. Gardel, P. Revenga, and M. Martinez, "Modeling radiated electromagnetic emissions of electric motorcycles in terms of driving profile using MLP neural networks," Progress In Electromagnetics Research, Vol. 135, 231-244, 2013.
doi:10.2528/PIER12102510

3. Santorelli, A., M. Chudzik, E. Kirshin, E. Porter, A. Lujambio, I. Arnedo, M. Popovic, and J. D. Schwartz, "Experimental demonstration of pulse shaping for time-domain microwave breast imaging," Progress In Electromagnetics Research, Vol. 133, 309-329, 2013.
doi:10.2528/PIER12091008

4. Liu, C.-C. and C.-J. Wu, "Near infrared filtering properties in photonic crystal containing extrinsic and dispersive semiconductor defect," Progress In Electromagnetics Research, Vol. 137, 359-370, 2013.
doi:10.2528/PIER13010107

5. Ding, D. G., F. Luo, and W. C. Zhou, "Effects of thermal oxidation on electromagnetic interference shielding properties of SiCf/SiC composites," Ceramics International, Vol. 39, 4281-4286, 2013.
doi:10.1016/j.ceramint.2012.11.007

6. Joseph, N., S. K. Singh, R. K. Sirugudu, V. R. K. Murthy, S. Ananthakumar, and M. T. Sebastian, "Effect of silver incorporation into PVDF-barium titanate composites for EMI shielding applications," Materials Research Bulletin, Vol. 48, 1681-1687, 2013.
doi:10.1016/j.materresbull.2012.11.115

7. Moon, Y. E., J. Yun, and H. I. Kim, "Synergetic improvement in electromagnetic interference shielding characteristics of polyaniline-coated graphite oxide/γ-Fe2O3/BaTiO3 nanocomposites," Journal of Industrial and Engineering Chemistry, Vol. 19, 493-497, 2013.
doi:10.1016/j.jiec.2012.09.002

8. Chen, J. and Z. Du, "Device simulation studies on latch-up effects in CMOS inverters induced by microwave pulse," Microelectronics Reliability, Vol. 53, 371-378, 2013.
doi:10.1016/j.microrel.2012.10.012

9. Tlig, M., J. Ben Hadj Slama, and M. A. Belaid, "Conducted and radiated EMI evolution of power RF N-LDMOS after accelerated ageing tests," Microelectronics Reliability, Vol. 53, 1793-1797, 2013.
doi:10.1016/j.microrel.2013.07.111

10. Kim, H. R., K. Fujimori, B. S. Kim, and I. S. Kim, "Lightweight nanofibrous EMI shielding nanowebs prepared by electrospinning and metallization," Composites Science and Technology, Vol. 72, 1233-1239, 2013.
doi:10.1016/j.compscitech.2012.04.009

11. Kaur, A., Ishpal, and S. K. Dhawan, "Tuning of EMI shielding properties of polypyrrole nanoparticles with surfactant concentration," Synthetic Metals, Vol. 162, 1471-1477, 2012.
doi:10.1016/j.synthmet.2012.05.012

12. Groos, G., "Characterisation method for chip card ESD events causing terminal failures," Microelectronics Reliability, Vol. 52, 2005-2009, 2012.
doi:10.1016/j.microrel.2012.06.072

13. Jang, C. K., J. H. Park, and J. Y. Jaung, "MWNT/PEG grafted nanocomposites and an analysis of their EMI shielding properties," Materials Research Bulletin, Vol. 47, 2767-2771, 2012.
doi:10.1016/j.materresbull.2012.04.131

14. Guo, H., H. Wu, B. Zhang, and Z. Li, "Research on periodic switching frequency modulation for conducted EMI suppressing in power converter," Microelectronics Journal, Vol. 42, 415-421, 2011.
doi:10.1016/j.mejo.2010.10.002

15. Guo, H., H. Wu, B. Zhang, and Z. Li, "A novel spread-spectrum clock generator for suppressing conducted EMI in switching power supply," Microelectronics Journal, Vol. 41, 93-98, 2010.
doi:10.1016/j.mejo.2009.12.012

16. Tsai, H. C., "Investigation into time- and frequency-domain emi-induced noise in bistable multivibrator," Progress In Electromagnetics Research, Vol. 100, 327-349, 2010.
doi:10.2528/PIER09112904

17. Wang, W., Y. Huang, X. Duan, Y. Zhou, J. Guo, and X. Ren, "Monolithically integrated tunable dual-wavelength photodetector with flat-top response," Optics Communications, Vol. 285, 638-644, 2012.
doi:10.1016/j.optcom.2011.11.019

18. Ramesh, R., M. Madheswaran, and K. Kannan, "Physical noise model of a uniformly doped nanoscale FinFET photodetector," Optik --- International Journal for Light and Electron Optics, Vol. 123, 1087-1094, 2012.
doi:10.1016/j.ijleo.2011.07.037

19. Pavel, A. A., N. E. Islam, A. K. Sharma, C. S. Mayberry, and S. L. Lucero, "Minimizing reflection and focussing of incident wave to enhance energy deposition in photodetector’s active region," Progress In Electromagnetics Research, Vol. 65, 71-80, 2006.
doi:10.2528/PIER06062605

20. Cheng, D. K., Field and Wave Electromagnetics, 2nd Ed., 231-232, Addison-Wesley Publishing Company, USA, 1989.

21. Cheng, D. K., Field and Wave Electromagnetics, 2nd Ed., 252-280, Addison-Wesley Publishing Company, USA, 1989.

22. Giancoli, D. C., Physics for Scientists & Engineers, 3rd Ed., 952-961, Prentice-Hall International Limited, London, UK, 2000.