Vol. 61
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-11-05
Imaging of 3-d Dielectric Objects Using Far-Field Holographic Microwave Imaging Technique
By
Progress In Electromagnetics Research B, Vol. 61, 135-147, 2014
Abstract
This paper describes the working principle of a three-dimensional (3-D) holographic microwave imaging (HMI) method for imaging small inclusion embedded in a dielectric object. Using published dielectric properties of various materials, a 3-D mathematical model is developed under the MATLAB environment to validate the HMI on various dielectric objects. Results indicate that the 3-D HMI has an ability to produce a 3-D image and detect small inclusions embedded within a dielectric object. Several potential applications of the 3-D HMI method includes biological tissues imaging, security screening and packaged food evaluation.
Citation
Lulu Wang, Ahmed M. Al-Jumaily, and Ray Simpkin, "Imaging of 3-d Dielectric Objects Using Far-Field Holographic Microwave Imaging Technique," Progress In Electromagnetics Research B, Vol. 61, 135-147, 2014.
doi:10.2528/PIERB14082001
References

1. Ghavami, N., G. Tiberi, D. J. Edwards, and A. Monorchio, "UWB microwave imaging of objects with canonical shape," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 231-239, 2012.
doi:10.1109/TAP.2011.2167905

2. Irishina, N., "Microwave medical imaging using level set techniques,", Ph.D. Dissertation, Charles III University of Madrid, Spain, 2009.

3. Nikolova, N. K., "Microwave imaging for breast cancer," IEEE Microwave Magazine, Vol. 12, No. 7, 78-94, 2011.
doi:10.1109/MMM.2011.942702

4. Hassan, A. M. and E. Shenawee, "Review of electromagnetic techniques for breast cancer detection," IEEE Reviews in Biomedical Engineering, Vol. 4, 103-118, 2011.
doi:10.1109/RBME.2011.2169780

5. Zhu, G. K., "Application of microwave techniques in breast imaging,", Ph.D. Thesis, McGill University, Montreal, Canada, 2011.

6. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array — Experimental results," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 1692-1704, 2009.
doi:10.1109/TAP.2009.2019856

7. Klemm, M., J. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, and R. Benjamin, "Microwave radar-based differential breast cancer imaging: Imaging in homogeneous breast phantoms and low contrast scenarios," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2337-2344, 2010.
doi:10.1109/TAP.2010.2048860

8. Fang, Q., P. M. Meaney, S. D. Geimer, A. V. Streltsov, and K. D. Paulsen, "Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation," IEEE Trans. on Medical Imaging, Vol. 23, No. 4, 475-484, 2004.
doi:10.1109/TMI.2004.824152

9. Rubæk, T., O. S. Kim, and P. Meincke, "Computational validation of a 3-D microwave imaging system for breast-cancer screening," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 7, 2105-2115, 2009.
doi:10.1109/TAP.2009.2021879

10. Fear, E. C., "Microwave imaging of the breast," Technology in Cancer Research & Treatment, Vol. 4, No. 1, 69-82, 2005.
doi:10.1177/153303460500400110

11. Tipa, R. and O. Baltag, "Microwave thermography for cancer detection," Romanian Journal of Physics, Vol. 51, No. 3-4, 371, 2006.

12. Grzegorczyk, T. M., P. M. Meaney, P. A. Kaufman, R. M. di Florio-Alexander, and K. D. Paulsen, "Fast 3-D tomographic microwave imaging for breast cancer detection," IEEE Trans. on Medical Imaging, Vol. 31, No. 8, 1584-1592, 2012.
doi:10.1109/TMI.2012.2197218

13. Smith, D., M. Leach, M. Elsdon, and S. J. Foti, "Indirect holographic techniques for determining antenna radiation characteristics and imaging aperture fields," IEEE Antennas and Propagation Magazine, Vol. 49, No. 1, 54-67, 2007.
doi:10.1109/MAP.2007.370982

14. Ravan, M., R. K. Amineh, and N. K. Nikolova, "Two-dimensional near-field microwave holography," Inverse Problems, Vol. 26, No. 5, 055011, 2010.
doi:10.1088/0266-5611/26/5/055011

15. Amineh, R. K., M. Ravan, A. Khalatpour, and N. K. Nikolova, "Three-dimensional near-field microwave holography using reflected and transmitted signals," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4777-4789, 2011.
doi:10.1109/TAP.2011.2165496

16. Jayanthy, M., N. Selvanathan, M. Abu-Bakar, D. Smith, H. M. Elgabroun, P. M. Yeong, and S. S. Kumar, "Microwave holographic imaging technique for tumour detection," 3rd Kuala Lumpur International Conference on Biomedical Engineering, 275-277, 2006.

17. Meaney, P. M., M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, C. A. Kogel, and K. D. Paulsen, "Initial clinical experience with microwave breast imaging in women with normal mammography," Academic Radiology, Vol. 14, No. 2, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016

18. Halter, R. J., T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth, Jr., K. M. Rosenkranz, and K. D. Paulsen, "The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: Initial clinical experience," Physiological Measurement, Vol. 30, No. 6, S121, 2009.
doi:10.1088/0967-3334/30/6/S08

19. Meaney, P. M., P. A. Kaufman, L. S. Muffly, M. Click, S. P. Poplack, W. A. Wells, and K. D. Paulsen, "Microwave imaging for neoadjuvant chemotherapy monitoring: Initial clinical experience," Breast Cancer Res., Vol. 15, No. 2, 1-16, 2013.
doi:10.1186/bcr3418

20. Fear, E. C., J. Bourqui, C. Curtis, D. Mew, B. Docktor, and C. Romano, "Microwave breast imaging with a monostatic radar-based system: A study of application to patients," IEEE Trans. on Microwave Theory and Techniques, Vol. 61, No. 5, 2119-2128, 2013.
doi:10.1109/TMTT.2013.2255884

21. Wang, L., R. Simpkin, and A. M. Al-Jumaily, "Holographic microwave imaging array for early breast cancer detection," ASME 2012 International Mechanical Engineering Congress and Exposition, 45-51, American Society of Mechanical Engineers, 2012.

22. Wang, L., A. M. Al-Jumaily, and R. Simpkin, "Holographic microwave imaging array for brain stroke detection," Journal of Signal and Information Processing, Vol. 4, No. 3B, 96-101, 2013.
doi:10.4236/jsip.2013.43B017

23. Wang, L., R. Simpkin, and A. M. Al-Jumaily, "Holographic microwave imaging for medical applications," Journal of Biomedical Science and Engineering, Vol. 6, 823-833, 2013.
doi:10.4236/jbise.2013.68100

24. Wang, L., R. Simpkin, and A. M. Al-Jumaily, "3D breast cancer imaging using holographic microwave interferometry," Proceedings of the 27th Conference on Image and Vision Computing, 180-185, ACM, New Zealand, 2012.

25. Wang, L., R. Simpkin, and A.M. Al-Jumaily, "Holographic microwave imaging array: Experimental investigation of breast tumour detection," 2013 IEEE International Workshop on Electromagnetics (iWEM), 61-64, 2013.

26. Wang, L., R. Simpkin, and A.M. Al-Jumaily, "Open-ended waveguide antenna for microwave breast cancer detection," 2013 IEEE International Workshop on Electromagnetics (iWEM), 65-68, 2013.

27. Wang, L., A. M. Al-Jumaily, and R. Simpkin, "Antenna array configuration in holographic microwave imaging," 2014 ASME International Mechanical Engineering Congress & Exposition, Paper No. IMECE2014-36556, Montreal, Canada, Nov. 14-20, 2014.

28. Wang, L., "Holographic microwave imaging for lesion detection," Doctoral Dissertation, Auckland University of Technology, 2013.

29. Levanda, R. and A. Leshem, "Synthetic aperture radio telescopes," IEEE Signal Processing Magazine, Vol. 27, No. 1, 14-29, 2010.
doi:10.1109/MSP.2009.934719

30. Silver, S., "Radiation from current distributions," Microwave Antenna Theory and Design, 87-90, S. Peter Peregrinus Ltd., London, UK, 1984.

31. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, No. 20, 6093, 2007.
doi:10.1088/0031-9155/52/20/002